HYDROGEOLOGICAL ASSESSMENT AND TERRAIN ANALYSIS GRIZZLY HOMES SUBDIVISION, BECKWITH, ON

Project No.: CCO-22-0256

Prepared for:

Grizzly Homes 163 Foster Road Ashton, Ontario K0A 1B0

Prepared by:

McIntosh Perry Consulting Engineers Ltd. 115 Walgreen Road Carp, Ontario K0A 1L0

Original: August 22, 2022 Revision 1: July 28, 2023 Revision 2: April 15, 2024

EXECUTIVE SUMMARY

McIntosh Perry (MP) was retained by Grizzly Homes ('the Client') to conduct a Hydrogeological Assessment and Terrain Analysis at the Grizzly Homes Subdivision in the Township of Beckwith, Franktown, Ontario (the Site) (Figure 1). The site is bound by Fourth Line Road to the north, Perth Road to the south, and is located approximately 275m west of Highway 15, near the hamlet of Franktown within the Township of Beckwith. An outline of the Site, showing the neighbouring properties is presented on Figure 2. At the present time, the Site consists primarily of undeveloped shrub/forested land, with the exception of the presence of a single residential dwelling in the northern portion of the site.

The Site is relatively flat. The elevation ranges between 136 and 148.5 metres above sea level (m asl), with the majority of the site at an elevation between 140 and 148 metres above sea level (m asl).

McIntosh Perry supervised the installation of four on-site water wells, as well as the excavation of fifteen on-site test pits. Wells were used for groundwater quality and quantity testing, and all test well locations were selected for eventual domestic use when the Site is developed. Test pit data were collected for purposes of soil classification and overburden thickness. A summary of the test wells and test pit locations is illustrated on Figure 2.

All test wells were pumped for at least six hours and were sampled twice during this time, per Ministry of Environment, Conservation and Parks (MECP) Procedure D-5-5. Certain on and offsite wells were subject to additional pumping and sampling to determine and confirm trends in water quality and quantity. Following the completion of all field testing, analytical data and pumping test results from all test wells supports McIntosh Perry's opinion that the on-site water supply aquifer is of high yield and good quality.

Test pit excavations revealed on-site shallow overburden to consist of either shallow bedrock, sand, gravelly sand, or clay overlain by topsoil. Bedrock was found at a maximum depth of approximately 1.7 metres below ground surface (m bgs) and generally consists of dolostone and sandstone of the Beekmantown Group based on Ontario Geological Survey (OGS) and MECP Water Well Information System (WWIS) records (2020).

The site appears to be suitable for the proposed development, from a hydrogeological perspective.

Table of Contents

EXE	CUTIVE SUMMARY	II
1.0	INTRODUCTION	4
2.0	INVESTIGATION	5
	2.1 Site Setting	5
	2.2 Neighbouring Properties and Land Uses	5
	2.3 Hydrology	5
	2.4 Background Geology and Hydrology	6
	2.4.1 Surficial and Bedrock Geology	6
	2.4.2 Recharge and Discharge Areas	6
	2.4.3 Hydrogeologically Sensitive Areas	6
	2.4.4 Potential Sources of Contamination	6
3.0	HYDROGEOLOGICAL ASSESSMENT	7
	3.1 Preamble	7
	3.2 Methodology	7
	3.3 Additional Groundwater Sampling	9
	3.3.1 April 2023	9
	3.3.2 May 2023	.10
	3.3.3 February – March 2024	.11
	3.3.4 March 2024 Microbial Re-Sampling	.11
	3.3.5 April 2024 Microbial Confirmatory Sample	.12
	3.4 Neighbour Well Surveys	.12
	3.5 Results	.13
	3.5.1 Static Conditions	.13
	3.5.2 Test Well Installations	.13
	3.5.3 Well Yield	.17
	3.5.4 Transmissivity and Storativity	.17
	3.5.5 Hydraulic Conductivity	.18

	3.5.6 Long Term Yield	19
	3.5.7 Well Interference	21
	3.5.8 Water Quality	23
	3.5.9 Nitrate Impacts	25
	3.6 Water Well Record Review	26
4.0	TERRAIN ANALYSIS	28
	4.1 Preamble	28
	4.2 General Soils Evaluations	28
	4.2.1 Overburden Characterization	29
	4.2.2 Soil Classification for Private Sanitary Servicing	30
	4.3 Contaminant Attenuation	32
5.0	SUMMARY OF CONDITIONS	35
	5.1 Preamble	35
	5.2 Regional Hydrogeology	35
	5.3 Site Hydrogeology	35
	5.4 Water Supply	36
6.0	RECOMMENDATIONS	38
	6.1 Water Supply	38
	6.2 Wastewater Treatment	39
7.0	LIMITATIONS	40
	DEFENDANCE	42

Tables

Table 1 – On-Site Test Well Details (in-text)

Table 2 – Test Well Information (in-text)

Table 3 – Summary of Pump Test Data (in-text)

Table 4 – Summary of Transmissivity and Storativity Calculations (in-text)

Table 5 – Summary of Hydraulic Conductivity Calculations (in-text)

Table 6 – Summary of Long-Term Yield Calculations and Cooper-Jacob 20-year drawdown (in-text)

Table 7 - Spring Water Level Measurements (in-text)

Table 8 - Summary of Groundwater Results

Table 9 – Summary of Field Parameters

Table 10 - Summary of Test Pits (in-text)

Figures

Figure 1 – Site Location

Figure 2 – Site Layout

Figure 3 – MECP Water Well Information System Summary

Figure 4 – Groundwater Flow

Figure 5 - Regional Bedrock Formation Mapping

Figure 6 – Regional Surficial Geology Mapping

Figure 7 – Test Pit Location Plan

Figure 8 – Soil Characterization

Appendices

Appendix A – Preliminary Concept Plan

Appendix B – Beckwith Township Official Plan

Appendix C – On-Site Water Well Records (Air Rock Drilling Ltd.)

Appendix D - MECP Well Records Summary

Appendix E - Pumping Test Data

Appendix F - Laboratory Certificates of Analysis

Appendix G - Calculations

Appendix H - Level logger and Baro logger data

Appendix I – Test Pit Logs and Laboratory Particle Size Distribution Reports

Appendix J – Nitrate Attenuation Calculations

McINTOSH PERRY iii

1.0 INTRODUCTION

McIntosh Perry (MP) was retained by Grizzly Homes ('the Client') to conduct a Hydrogeological Assessment and Terrain Analysis at a property located west of Highway 15, between Fourth Line Road and Perth Road in the Township of Beckwith, Franktown, Ontario (the Site) (Figure 1). The approximate civic address of the property is 2084 Fourth Line Road, Smiths Falls. This hydrogeological assessment and terrain analysis has been prepared in support of an application for the approval of a proposed 30-lot subdivision at the Site, which currently consists primarily of undeveloped forested land with the exception of a single residential dwelling located on the northern portion of the Site.

This work was conducted in general accordance with Ministry of Environment, Conservation and Parks (MECP) guidance as follows:

- Procedure D-5-5: Technical Guideline for Private Wells: Water Supply Assessment (August 1996);
 and
- Procedure D-5-4: Individual On-Site Sewage Systems: Water Quality Impact Risk Assessment (August 1996).

This work was initiated by McIntosh Perry in 2021 with a Site reconnaissance to observe surface conditions and select drilling locations. The work presented herein involved the following:

- Topographic survey of on-site drilled wells (completed by McIntosh Perry Surveying Inc.);
- Hydrogeological assessment (for evaluating water supply); and
- Terrain Analysis (for evaluating existing conditions for private sewage treatment).

The property is owned by Grizzly Homes Inc. and is legally described as follows:

PT SW1/2 LT 10 CON 3 BECKWITH AS IN RS45238, EXCEPT 27R2160, 27R5512, 27R6268, 27R4263, 27R4808, 27R3949; S/T RS34528; BECKWITH

A full Preliminary Concept Plan is included as Appendix A.

This report considers the development potential of the entire land holding, which includes a total of 30 lots over a total area of approximately 27 hectares. The Hydrogeological Assessment and Terrain Analysis address the following:

- General Site setting information;
- Geological and hydrogeological background;
- Site-specific conditions;
- Soils evaluation; and
- Contaminant attenuation.

2.0 INVESTIGATION

2.1 Site Setting

The Site is located in the western portion of the hamlet of Franktown within the Township of Beckwith in central Eastern Ontario, south of the Town of Carleton Place (Figure 1).

The Site currently exists predominantly as undeveloped forested/shrub land with the exception of a single residential dwelling located on the northern portion of the Site. There are residentially developed lands immediately north and south of the Site along Fourth Line Road and Perth Road, as well as to the east along Highway 15; otherwise, the surrounding land use is predominately forested land.

This region is characterized by thin overburden overlying Paleozoic bedrock (OGS, 2022; MECP, 2020).

The Site currently consists of forested land and several wetlands and has likely never been contemporarily developed with the exception of the existing residential present on the northern portion of the Site. On-site elevation ranges between 141 and 149 metres above sea level (m asl) (McIntosh Perry, 2022). The topography of the Site is generally flat.

2.2 Neighbouring Properties and Land Uses

For purposes of this report, Highway 15 is assumed to be oriented in a North-South direction. The property is bound to the north by Fourth Line Road, Highway 15 and rural residential properties to the east, Perth Road and rural residential properties to the south, and undeveloped forested land to the west.

Based on a review of MECP Well Record Information System (WWIS) records, it appears that all residences in the area are privately serviced with wells and septic systems.

The subject site and the surrounding properties to the east and south are located within a community development area designated as residential, while the properties to the north and west are designated as rural lands within rural areas in the Township of Beckwith's Official Plan. The Township's Official Plan – Schedule A is included as Appendix B.

2.3 Hydrology

The Site is relatively flat. Wetland areas appear to be present around the center of the Site. A small local waterbody is also present on Site, as seen in Figure 2. The Franktown Swamp, which forms part of the Upper Jock River (part of the Mississippi River system), is the closest permanent waterbody to the Site and is located approximately 550 m east of the Site at its closest point. On a local scale, shallow groundwater flow cannot be determined fully due to limited data, and is likely highly influenced by local features, including the on-site pond/wetland. On a regional scale, data obtained from the Provincial Groundwater Monitoring Network (PGMN) accessed through the MECP's Source Water Protection Atlas (2009-2019 dataset) suggest groundwater

in the deeper bedrock formation has a southern and eastern flow component (PGMN 2024). Interpretation of regional data trends to represent actual flow directions in the immediate vicinity of the Site should be made with caution; regional groundwater flow trends can be unreliable on a smaller scale in highly fractured bedrock systems, as is the case for the Site.

2.4 Background Geology and Hydrology

2.4.1 Surficial and Bedrock Geology

According to Ontario Geological Survey (OGS) regional mapping, surficial overburden at the Site is thin, and is characterized by Paleozoic bedrock (OGS, 2022). This classification is consistent with on-site observations made by McIntosh Perry. Based on OGS 2022 data, the underlying bedrock is classified as dolostone and sandstone of the Beekmantown Group, which is consistent with MECP WWIS Records (MECP 2020).

Well records for on-site drilled test wells indicate an average overburden thickness of approximately 1.0 m, with only one record indicating an overburden depth greater than 1.8 m. It should be noted that overburden thickness was recorded at less than 0.5 m in some areas of the Site. A review of the MECP Water Well Information System (WWIS) well records within 500 m of the Site showed that the depth to bedrock ranges from 0 - 4.3 m bgs, with an average depth of approximately 0.83 m bgs. Where noted in the well records, bedrock is typically referred to as either "sandstone" or "limestone" by the driller (Appendix C).

An offsite well used strictly for testing purposes located at 2030 Fourth Line Road indicates that overburden thickness is approximately 1.2 m.

2.4.2 Recharge and Discharge Areas

A review of topographic data, geological maps, and field notes show that the property is generally flat with some local sloping down towards the northwest. Shallow groundwater and surface water likely drain in this direction. Shallow groundwater in the northern portion of the site may move toward what appears to be a large on-site wetland complex and waterbody, located in the middle of the Site. In most areas of the Site, the terrain appears to be well-drained.

2.4.3 Hydrogeologically Sensitive Areas

The underlying bedrock appears to be relatively shallow across the property, ranging from 0.3 - 1.8 m bgs based on test well records. Areas exhibiting exposed bedrock were observed during fieldwork, closest to the south property boundary along Perth Road. Based on the thin overburden, the Site is considered to be hydrogeologically sensitive.

2.4.4 Potential Sources of Contamination

A windshield survey of the area was conducted in combination with a review of maps and zoning information. The Site is located in a predominantly forested area, with forested/undeveloped and/or residential-rural properties in the immediate vicinity. None of these uses are expected to pose a significant source of potential contamination to the proposed development.

As there is no wastewater service available in the area surrounding the Site, there are likely individual on-site sewage systems at all nearby residences. There are currently no known services located on the Site, aside from private services assumed to be connected to the single detached dwelling present at the northern end of the site accessed from Fourth Line Road.

A review of the MECP WWIS database indicated Sixty-two (62) water wells located within 500 m of the Site. Sixty (60) of these wells are listed for domestic purposes, while the remaining two (2) wells are listed as either observation well or abandoned. The MECP WWIS records are shown on Figure 3, and data are summarized in Appendix D.

3.0 HYDROGEOLOGICAL ASSESSMENT

3.1 Preamble

McIntosh Perry conducted a detailed hydrogeological investigation at the Site to assess the feasibility of individual private wells for servicing the proposed residential lots. As noted in Section 1, the work generally followed the Guidance of MECP Procedure D-5-5: Technical Guideline for Private Wells – Water Supply Assessment.

3.2 Methodology

Air Rock Drilling Ltd. (Air Rock; Well Contractor's Licence No.1119) was retained by Grizzly Homes to drill four water wells at the Site for testing purposes and eventual domestic use when the property is developed. The drilling was conducted by licensed employees of Air Rock, and McIntosh Perry personnel observed the grouting of each well per O. Reg. 903 (Wells), as amended. The driller also provided and installed a pump for the pumping test activities at the drilled test wells (TW2, TW3, TW4, TW5). A summary of the test well construction based on driller-provided well records is presented in Table 1. The location of all on-site wells is noted on Figure 2.

It is important to note that TW1 is an existing offsite well, located at 2030 Fourth Line Road, Beckwith, ON.

Table 1: On-Site Test Well Details

Well ID	Depth (m bgs)	Completion Material ¹	Driller's Estimated Yield² (L/min)
TW 1 (offsite)	24.7	Sandstone	90
TW 2	30.5	Sandstone	90
TW 3	36.6	Sandstone	90
TW4	37.2	Sandstone	90
TW 5	42.7	Sandstone	90

¹ Bedrock formations as noted on Well Record

The initial estimation of the yield and quality of water from each test well was made by the drillers during development, which occurred approximately one day after drilling was completed. The yield determined by this one-hour test is noted in Table 1. MECP water well records are provided in Appendix D.

A minimum six-hour pumping test was conducted at each of the four on-site test wells (TW2, TW3, TW4, and TW5) and the offsite private well (TW1), by McIntosh Perry staff (July 2021 – January 2022). During each test, the test wells were pumped at a rate not less than the driller-recommended pumping rate, with the exception of TW1, offsite which utilized existing plumbing fixtures. Water levels were measured in the pumped well and at other on-site test wells in the vicinity, where possible. Water quality was also monitored and recorded in the field during the tests at all five locations. Two water samples were collected from each pumped well during their respective tests (one each during the first and last hours of the test) for analysis of the "subdivision supply" suite of parameters, in addition to a select suite of metals.

All samples were collected unfiltered and unchlorinated directly into clean bottles supplied by the analytical laboratory (either Paracel Laboratories or Eurofins of Ottawa, ON). Prior to each sample collection in 2021, a field test for chlorine (disposable testing strips) was completed to ensure no residual chlorine persisted from the initial well shocking. Samples collected in 2023-2024 utilized a zero-standardized Hach DR900 colorimeter for confirmation of zero chlorine residual.

Visual and olfactory observations of the pumped water were made during each pumping test to monitor for effervescence, odours, or other physical indicators of water quality. Samples were kept on ice and shipped directly to Paracel or Eurofins under strict chain of custody procedures. All samples were received by the

² Recommended pumping rates as noted on Well Record

laboratory within 24 hours of collection. Both Paracel and Eurofins are fully accredited by the Standards Council of Canada/Canadian Association for Laboratory Accreditation (SCC/CALA) and has accreditation for Ontario Safe Drinking Water Act (OSDWA) testing.

During all five pumping tests, water level monitoring consisted of manual readings with a water level tape. Drawdown was measured in the pumped wells and recovery measurements were made until at least 95% recovery was achieved in the pumping well, or 24 hours had passed (whichever came first).

Water level drawdown and recovery data from the pumping tests were plotted and analyzed using the Cooper-Jacob solution and were used to calculate transmissivity (T) and hydraulic conductivity (K) for the aquifer. Storativity (S) of the aquifer was estimated wherever suitable observation well measurements could be made.

3.3 Additional Groundwater Sampling

Additional groundwater samples were collected in April-May 2023 and February-April 2024, following spring freshets. This additional sampling was conducted to better characterize potential surface impacts to the supply groundwater, and to ensure the supply aquifer is capable of providing groundwater of an acceptable quality under D-5-5 and the Ontario Drinking Water Standards. The methodology of this additional sampling is outlined in the below sections.

With exception of 198 Perth Road, MECP well records could not be found for private well samples collected under this additional sampling program.

3.3.1 April 2023

On April 17-19, 2023, additional groundwater samples were collected based on the detection of elevated nitrate concentrations observed at TW3 from the 2021 sampling (2.4 – 2.5 mg/L). In order to make additional observations, McIntosh Perry collected follow up samples from TW1, TW2, TW3, TW4, and TW5 to confirm current Site conditions. Four (4) surrounding properties located at 9477 Hwy 15, 9493 Hwy 15, 9578 Hwy 15, and 220 Perth Road were also sampled to characterize the groundwater surrounding the Site. Sampling locations are outlined on Figure 2.

A total of nine (9) locations (listed above) were sampled for the following parameters that are typical indicators of surficial impacts to groundwater:

- Microbial parameters (E.Coli, Total Coliforms, and Fecal Coliforms);
- Nitrate;
- Nitrite;
- TKN;
- Ammonia; and
- Phosphorus.

Additionally, two (2) samples for volatile organic compounds (VOC) were collected from two (2) non-adjacent on-Site test wells (TW2 and TW5). VOCs were analyzed to ensure that no impacts from a well-documented source of VOCs further to the north in the Township of Beckwith are present in the on-site test wells.

Prior to sample collection, the on-Site test wells were purged a minimum of three (3) well volumes to allow for the influx of fresh formation water.

Based on April 2023 data, the following test well observations were made:

- The concentration of nitrate in TW2 remained relatively constant between 0.5 mg/L and 0.6 mg/L;
- The concentration of nitrate in TW3 remained relatively constant between 2.4 mg/L and 2.8 mg/L;
- The concentration of nitrate in TW4 decreased from 1.6 mg/L to 0.1 mg/L;
- The concentration of nitrate in TW5 remained relatively constant between 0.8 mg/L and 1.0 mg/L;
 and
- An ODWS exceedance for total coliforms (1 CFU) was observed at TW5 in the April 2023 sample, which was not previously detected in the 2021 sample.

Nitrate was found to be present in all private wells (with the exception of TW1, which is being used as a test well) at concentrations between 0.4 mg/L and 1.2 mg/L. The higher range of nitrate data is noted in wells located along Highway 15. Two (2) of the offsite wells had ODWS exceedances for total coliforms (220 Perth Rd (9 CFU) and 9477 Hwy 15 (1 CFU)).

3.3.2 *May 2023*

Based on the continued elevated nitrate concentrations at TW3, the decrease in nitrate concentrations observed at TW4, and the low-level detection of total coliforms at TW5, McIntosh Perry completed another round of follow up samples at these wells.

On May 29, 2023, the three (3) on-site test wells (TW3, TW4, TW5) were sampled for the same parameters listed in Section 3.3.1 (microbial parameters, nitrate, nitrite, TKN, ammonia and phosphorus).

Prior to sample collection, the on-Site test wells were purged a minimum of three (3) well volumes to allow for the influx of fresh formation water.

Based on May 2023 data, the following test well observations were made:

- The concentration of nitrate in TW3 remained relatively constant between 2.8 mg/L and 2.7 mg/L;
- The concentration of nitrate in TW4 decreased from 0.1 mg/L to non-detectable;
- The concentration of nitrate in TW5 decreased from 1.0 mg/L to 0.4 mg/L; and
- There were no total coliforms detected in TW5.

3.3.3 *February – March 2024*

An additional round of groundwater sampling was conducted for the four (4) on-Site test wells (TW2, TW3, TW4, and TW5), and offsite neighbouring private wells (9578 Hwy 15, 198 Perth Road, and 216 Church St) to confirm longer-term trends and potential surface impacts to the groundwater supply aquifer. McIntosh Perry attempted to reach the residents of 220 Perth Road, 9477 Hwy 15, and 9493 Hwy 15 to resample their wells, but was unsuccessful. As such, new offsite private wells were identified (198 Perth, 216 Church St) and one previously sampled well was resampled (9578 Hwy 15).

During February and March 2024, four (4) on-Site test wells (TW2, TW3, TW4, and TW5) were sampled for the same parameters listed in Section 3.3.1 (microbial parameters, nitrate, nitrite, TKN, ammonia and phosphorus).

- Microbial parameters (E. Coli., Total Coliforms, and Fecal Coliforms);
- Nitrate;
- Nitrite;
- TKN;
- · Ammonia; and
- Phosphorus.

Three (3) private well samples (198 Perth, 216 Church St, and 9578 Hwy 15 (resample)) were collected and analyzed for the full suite of subdivision parameters, including microbial analytes and trace metals.

Prior to sample collection, the on-Site test wells were purged a minimum of three (3) well volumes to allow for the influx of fresh formation water.

Based on February and March 2024 data, the following test well observations were made:

- The concentration of nitrate in TW2 remained constant at non-detectable;
- The concentration of nitrate in TW3 nitrate decreased from 2.7 mg/L to 1.3 mg/L;
- The concentration of nitrate in TW4 remained constant at non-detectable;
- The concentration of nitrate in TW5 increased slightly from 0.4 mg/L to 0.9 mg/L;
- An ODWS exceedance for total coliforms (1 CFU) was observed at TW5 in the March 7, 2024 sample.

3.3.4 March 2024 Microbial Re-Sampling

Due to the ODWS exceedance for total coliforms at TW5 (1 CFU/100 mL), the well was shocked and circulated by Air Rock on March 20, 2024. Starting at approximately 7:00 am on March 21st, Air Rock purged the well at 90 L/min for approximately 9 hours. McIntosh Perry sampled TW5 at 4:00 pm the same day, and a qualified third party (Robert Passmore, P.Eng., working directly for the Client) collected an additional bacteriological sample at approximately 4:30 pm.

Prior to both sample collections, residual chlorine was measured to be non-detect (<0.02 mg/L) using a Hach DR-900.

The sample collected by McIntosh Perry was submitted to Paracel, and was found to be inconclusive based on a failed laboratory QC test (one test showed 1 CFU/100 mL, while the QC sample showed 0 CFU/100 mL). The bacteriological sample collected by Robert Passmore, P.Eng. was submitted to Eurofins, and was found to have no total coliforms (0 CFU/100 mL).

3.3.5 April 2024 Microbial Confirmatory Sample

A final confirmatory microbial sample was collected at TW5 on April 8, 2024 following the ODWS exceedance for total coliforms on March 21.

Starting at approximately 7:30 am on April 8, Air Rock purged the well at 90 L/min for approximately 9 hours. McIntosh Perry sampled TW5 at 4:30 pm the same day. Prior to sample collection, residual chlorine was measured to be non-detect (<0.02 mg/L) using a Hach DR-900.

The sample collected by McIntosh Perry was submitted to Eurofins and was found to have no microbial detections.

3.4 Neighbour Well Surveys

The following outlines the information received from neighbouring residents pertaining to their wells:

- 220 Perth Road (April 2023): Well record is not available, resident provided limited information.
- 9477 Hwy 15 (April 2023): Well record is not available, resident provided limited information.
- 9493 Hwy 15 (April 2023): Well record is not available, resident provided limited information.
- **216 Church Street (February/March 2024)**: Two people have utilized the existing well for 7 years. No water quality or quantity issues exist at this address.
- 198 Perth Road (February/March 2024): Two people moved into this residence within the last year. No water quality or quantity issues exist at this address. The Well Record is included within Appendix C (Well tag #A363510).
- 9578 Hwy 15 (April 2023, February/March 2024): One person has utilized this well over the past 25 years. The homeowner reported a sulfur smell in the Spring and Fall, but no other quality or quantity issues exist at this address. Although a Well Record is not available at this location, the homeowner reported that the well was drilled approximately 48 years ago with 40 feet of casing. The well is installed below grade, somewhere near the driveway/roadside.

3.5 Results

Drawdown curves and tabular data from the pumping tests are available in Appendix E and Table 3, respectively. A summary of groundwater quality data and the official Laboratory Certificates of Analysis are available in Appendix F.

3.5.1 Static Conditions

Prior to the initiation of pumping, water levels were measured in the five test wells (Table 2, below) by the drillers. The static groundwater elevation ranged between 142.904 – 148.916 m asl at the time of the pumping tests (Figure 4). Static groundwater elevations suggest that on-site bedrock groundwater flow has a a southwestern flow component. On-site wells were completed in a similar geologic unit (listed by the driller as "sandstone"). Well depths are noted in Table 2, below.

Table 2: Test Well Information

Well ID	Well Depth (m bgs)	Top of Well Casing Elevation (m asl) ¹	Stick Up (m)	Static Groundwater Level (m btoc)	Static Water Elevation (m asl)
TW1	24.7	N/A	N/A	3.78	N/A
TW 2	30.5	142.904	0.626	4.762	138.142
TW 3	36.6	147.776	0.637	9.481	138.295
TW 4	37.2	148.299	0.648	11.51	136.789
TW 5	42.7	148.916	0.548	11.446	137.47

¹ As measured by McIntosh Perry Surveyors Inc. (May 2022). TW1 was not available for surveying.

3.5.2 Test Well Installations

Pumping tests were conducted at each of the five wells by McIntosh Perry. The pump, hose, and power supply were provided by Air Rock, who installed and removed the pump from each well, with the exception of TW1. TW1 was completed at an off-Site private residence where the plumbing was already installed. The discharged water was directed away from each pumping well and allowed to flow overland away and downgradient from the test well. At the time of the on-site pumping tests, the weather was approximately between 22-25 °C, with

sun and clouds. The weather was approximately -15°C with sun and clouds at the time of the pumping test at TW1.

All the water level measurement data are presented in Table 3.

TW1

TW1 (an existing private well) was drilled to a depth of 24.7 m. The overburden was approximately 1.22 m thick at this location. A 12.8 m long steel casing (including approximately 0.61 m of above-ground stickup) was installed in the hole and sealed with cement. The hole was grouted from ground surface to approximately 12.2 m bgs. The remainder of the well is an open hole in the rock. The rock was described as "limestone" with "sandstone with limestone" from 1.22 m - 24.7 m by the driller. Water was encountered at 21.64 m and 22.9 m.

The driller initially estimated a yield of 90 L/min (20 gal/min), which was also the final recommended pumping rate for this well.

McIntosh Perry undertook a pumping test at this location on January 18, 2022. The well was pumped at a rate of 21.1 L/min for over six hours, and monitored throughout the duration of the test. The pumping rate was manually measured throughout the pumping test using a volumetric bucket and stopwatch. The water levels stabilized at approximately 4.15 m btoc. Over 95% recovery in water level was achieved within 51 minutes of terminating the test.

TW 2

TW 2 was drilled to a depth of 30.48 m. The overburden was approximately 0.30 m thick at this location. A 13.4 m long steel casing (including approximately 0.61 m of above-ground stickup) was installed in the hole and sealed with a cement/bentonite grout. The hole was grouted from ground surface to approximately 12.8 m bgs. The remainder of the well is an open hole in the rock. The rock was described as "limestone" from 0.30 m -9.14 m and "sandstone" from 9.14 - 30.48 m by the driller. Water was encountered at 28.65 m.

The driller initially estimated a yield of 90 L/min (20 gal/min), which was also the final recommended pumping rate for this well.

McIntosh Perry undertook a pumping test at this location on July 13, 2021. The well was pumped at a rate of 87.3 L/min for over six hours, and monitored throughout the duration of the test. The pumping rate was manually measured throughout the pumping test using a volumetric bucket and stopwatch. The water levels stabilized at approximately 9.5 m btoc (~133.404 m asl). Over 95% recovery in water level was achieved within 35 minutes of terminating the test.

TW 3

TW 3 was drilled to a depth of 36.6 m. The overburden was approximately 0.46 m thick at this location. A 13.4 m long steel casing (including approximately 0.61 m of above-ground stickup) was installed in the hole and sealed with a cement/bentonite grout. The hole was grouted from approximately 12.8 m to the ground surface. The remainder of the well is an open hole in the rock. The driller described the rock as "limestone" from 0.46 - 9.14 m, and "sandstone" from 9.14 - 36.6 m. Water was encountered at 27.4 and 34.7 m.

The driller initially estimated a yield of 90 L/min (20 gal/min), which was also the final recommended pumping rate for this well.

McIntosh Perry undertook a pumping test at this location on January 13, 2021. The well was pumped at a rate of 90 L/min for over six hours, and monitored throughout the duration of the test. The pumping rate was manually measured throughout the pumping test using a volumetric bucket and stopwatch. The water levels stabilized at approximately 9.9 m btoc (~137.876 m asl). Approximately 69% recovery in water level was achieved within 24 hours of terminating the test.

Given the overall low maximum drawdown observed during the pumping test (0.632 m), the lack of full recovery at TW3 is attributed to atmospheric pressure changes and/or pumping at TW5 which was initiated during the recovery period for TW3. The partial recovery of TW3 to 69% is offset by the fact that this well has a high transmissivity (175.8 - 192.9 m^2 /day, see sections below).

TW 4

TW 4 was drilled to a depth of 37.2 m. The overburden was approximately 1.83 m thick at this location. A 13.4 m long steel casing (including approximately 0.61 m of above-ground stickup) was installed in the hole and sealed with a cement/bentonite grout. The hole was grouted from approximately 12.8 m to the ground surface. The remainder of the well is an open hole in the rock. The driller described the rock as "limestone" from 1.83 - 7.62 m, and "sandstone" from 7.62 - 37.2 m. Water was encountered at 29.9 and 35.4 m bgs.

The driller initially estimated a yield of 90 L/min (20 gal/min), which was also the final recommended pumping rate for this well.

McIntosh Perry undertook a pumping test at this location on September 9, 2021. The well was pumped at a rate of 90 L/min for over six hours, and monitored throughout the duration of the test. The pumping rate was manually measured throughout the pumping test using a volumetric bucket and stopwatch. The water levels stabilized at approximately 11.85 m btoc (~136.449 m asl). Over 95% recovery in water level was achieved within 161 minutes of terminating the test.

TW 5

TW 5 was drilled to a depth of 42.7 m. The overburden was approximately 1.52 m thick at this location. A 13.4 m long steel casing (including approximately 0.61 m of above-ground stickup) was installed in the hole and sealed with a cement/bentonite grout. The hole was grouted from approximately 12.8 m to the ground surface. The remainder of the well is an open hole in the rock. The rock was described as "limestone" from 1.52 - 8.23 m bgs, and "sandstone" from 8.23 - 42.7 m bgs by the driller. Water was encountered at 26.5 m bgs and again at 34.7 m bgs.

The driller initially estimated a yield of 90 L/min (20 gal/min), which was also the final recommended pumping rate for this well.

McIntosh Perry undertook a pumping test at this location on January 6, 2021. The well was pumped at a rate of 90 L/min for over six hours, and monitored throughout the duration of the test. The pumping rate was manually measured throughout the pumping test using a volumetric bucket and stopwatch. The drawdown stabilized at approximately 11.64 m btoc (~137.276 m asl). Over 95% recovery in water level was achieved within 24 hours of terminating the test.

Table 3: Summary of Pump Tests

Test Well ID	Final Pumping Rate (L/min)	Maximum Drawdown in Pumping Well (m)	Observation Well ID	Max Drawdown in Observation Well (m)	Approximate Distance between Pumping Well and Observation Well (m)
TW 1	21 ¹	0.431	Observation well not available at the time of the test	N/A	N/A
TW 2	87.27	.27 4.791 Observation well not available at the time of the test		N/A	N/A
TW 3	90	0.632	Observation well not used due to proximity and accessibility	N/A	N/A
TW 4	90	0.377	TW2	No observable drawdown	527

Test Well ID	Final Pumping Rate (L/min)	Maximum Drawdown in Pumping Well (m)	Observation Well ID	Max Drawdown in Observation Well (m)	Approximate Distance between Pumping Well and Observation Well (m)
			TW3	No observable drawdown	300
			TW5	No observable drawdown	225
TW 5	90	0.236	Observation well not used due to proximity and accessibility	N/A	N/A

¹ Pumping rate limited by plumbing fixtures.

3.5.3 Well Yield

The testing and development undertaken by the driller immediately after well installation provided a reasonable indication of the yield of each well. All test wells were demonstrated to have yields suitable for supplying single family homes. During McIntosh Perry's pumping tests at the five well locations, at least 7,560 L of water was pumped from each well. This volume exceeds the daily demand for water for a typical 4-bedroom home (2,000 L) and the minimum volume for a 6-hour pumping test (6,750 L), as specified in the Guideline Procedure D-5-5 Private Wells: Water Supply Assessment. At each location, at least 95% recovery was achieved between 0 and 1,440 minutes (24 hours) after the cessation of pumping, with the exception of TW3.

It is McIntosh Perry's professional opinion that the on-Site test wells meet D-5-5 water quantity requirements, and are capable of repeat pumping at a minimum rate of 18.75 L/min. It is our opinion that the tested well yields are representative of long-term yields that can be expected in the long-term.

The five test well locations were spaced 250 m apart at minimum. Due to the distance between wells and accessibility throughout the property, observation well measurements were not recorded, with the exception of during the pumping test at TW4. Two observation wells (TW2 and TW3) were monitored during the 6-hour pumping test at TW4. Minimal drawdown (0.028 – 0.15 m btoc) was observed in the observation wells.

3.5.4 Transmissivity and Storativity

A summary of the transmissivity values calculated using the Cooper-Jacob method are presented in Table 4 below.

Table 4: Transmissivity Values

Well ID	Transmissivity (m²/day) (Pumping Test Calculation) (Recovery Calculation)		
TW 1	43.3		
100 1	55.4		
TW 2	13.9		
TVV Z	16.7		
TW 3	175.8		
100 5	192.9		
TW 4	26.7		
1 vv 4	26.4		
TW 5	474.6		
1 W 5	365.1		

The calculations for transmissivity and storativity are presented in Appendix G.

Transmissivity is calculated using the Cooper-Jacob straight line method:

$$T=2.3 Q / 4\pi \Delta s$$

Where possible, storativity is calculated using data from an observation well with the following equation:

$$S=2.25 \text{ T t}_0 / r^2$$

Where:

- T is the transmissivity (m²/day)
- Q is the pumping rate (m³/day)
- Δ s is the change in hydraulic head over one log cycle (drawdown vs. log time)
- S is the storativity
- t₀ is the x-intercept of the observation well drawdown vs. log time line of best fit
- r is the distance between the pumped well and the observation well

Transmissivity values ranged from $13.9 - 474.6 \text{ m}^2/\text{day}$, as calculated based on water level drawdown and recovery data from pumped test wells.

Storativity cannot be assessed properly without the use of observation wells, which were not available for a majority of the pumping tests. Observations wells were used during the pumping test at TW4 (pumped at a rate of 90 L/min), but minimal drawdown was observed.

3.5.5 *Hydraulic Conductivity*

The hydraulic conductivity of each test well was calculated based on the average transmissivity.

Hydraulic conductivity is calculated using the following equation:

K=T/b

Where:

- K is the hydraulic conductivity (m/s)
- T is the transmissivity (m²/day, the more conservative value is used)
- b is the thickness of X m, which corresponds to the interval between the bottom of the casing and the bottom of the well, used as aquifer thickness (m)

Table 5: Summary of Hydraulic Conductivity Calculations

Well ID	TW1	TW2	TW3	TW4	TW5
Hydraulic Conductivity (m/s)	4.01x10 ⁻⁵	9.1 x10 ⁻⁶	8.56 x10 ⁻⁵	1.25 x10 ⁻⁵	1.41 x10 ⁻⁴

The hydraulic conductivity values summarized in Table 5 are generally consistent with higher values for limestone published by Freeze and Cherry, 1979 (10⁻⁹ to 10⁻⁵).

The calculations for hydraulic conductivity are presented in Appendix G.

3.5.6 Long Term Yield

Long term safe yield describes the amount of water that can safely be withdrawn from an aquifer without negative impact. The long-term safe yield of each well was estimated based on the following factors:

- Observations during six-hour pumping test;
- Driller's recommendation; and
- Calculated properties.

Farvolden Method

Utilizing transmissivity values calculated from individual pumping tests (Table 4), the theoretical long-term safe yield for each of the pumping wells was calculated following the Farvolden Method and presented in Table 6.

The following Farvolden equation calculates the long term 20-year safe pumping rate (Q_{20}) .

Q20=0.68 T Ha Sf

Where:

- Q₂₀ is the twenty-year safe yield (m³/day)
- T, is the transmissivity (m²/day)
- Ha is the available water column height (m)
- S_f is a safety factor

Moell Method

The Moell Method was also used to calculate the theoretical long-term 20-year safe pumping rate for each of the pumping wells. The long-term safe pumping rate (Q_{20}) was calculated using the following equation:

$$(Q_{20}) = (Q \text{ Ha Sf}) / (s100 + 5 \Delta s)$$

Where:

- Q₂₀ is the twenty-year safe yield (m³/day)
- Ha is the available water column height (m)
- S_f is a safety factor
- s100 is the drawdown at 100 minutes (semi-log long-term graph)
- Δ s is the change in hydraulic head over one log cycle (drawdown vs. log time, see Appendix E)

Based on the above Farvolden and Moell calculations, the estimated pumping rate of each test well that could be sustained for a twenty-year period of continuous pumping is shown in Table 6, below. Long term yield calculations are presented in Appendix G.

Q20 Verification – Cooper-Jacob Graphical Method

It should be noted that long-term projections of drawdown using the Cooper-Jacob method indicate that all test wells can sustain a constant pumping at rates exceeding 18.75 L/min (considered the base rate for a house in this proposed development) if pumped constantly for 20 years (see Appendix E). The calculated maximum drawdown for all wells when theoretically pumped at a rate of 18.75 L/min was below 0.95 m, with the exception of TW2 which would be expected to have a drawdown of approximately 2.2m.

_

Table 6: Summary of	Long-Term	Yield Ca	alculations

Well ID	TW1	TW2	TW3	TW4	TW5
Farvolden Method Long Term Yield (Q ₂₀) (L/min)	207.7	90.2	1,220.3	165.5	3,032.4
Moell Method Long Term Yield (Q ₂₀) (L/min)	206.1	84.7	1,155.5	249.0	3,518.2
Tested Pumping Rate (L/min)	21.0 ¹	81.8	90	90	90
Driller-Recommended Pumping Rate (L/min)	75.7	75.7	75.7	75.7	75.7

¹ Pumping rate limited by installed plumbing fixtures.

The calculation and consideration of long-term yield estimations is inherently conservative; wells are typically not pumped continuously for long periods of time, and a safety factor is incorporated into the calculations. In all cases, both the tested pumping rates and the driller-recommended pumping rates are considerably lower than the estimated long-term Q_{20} values. In McIntosh Perry's professional opinion, data collected from the Site indicate a highly productive aquifer. This is supported by not only long-term yield estimations, but also the fact that when TW4 was pumped at a rate of 90 L/min, no observable drawdown was recorded in TW2, TW3, and TW5.

Additionally, the lowest and most conservative transmissivity value from each test well was used to calculate long-term yields using both the Farvolden and Moell method.

Accordingly, McIntosh Perry is of the opinion that the aquifer is capable of supplying water at a flow rate which is greater than the minimum base flow rate of 18.75 L/min, which is considered a reasonable peak flow rate for a house in this proposed development.

3.5.7 Well Interference

Using the Theis equation theory, the estimated cumulative drawdown across the Site generated by all proposed wells (30) was determined. Using the data collected during McIntosh Perry's field program, an average transmissivity and storativity were used (average $T = 139.08 \text{ m}^2/\text{day}$; assumed $S = 1.0 \times 10^{-4}$). The theoretical

drawdown across the Site, assuming all wells were pumping continuously for 365 days at a rate of 2,250 L/day (D-5-5 personal requirements for a 5-person household), was calculated to be 0.369 m which is well within the available head for all test well locations (see Appendix G).

Additionally, a Solonist level logger®3001 and a Solonist baro logger®3001 were installed at TW5 from April 18, 2023, to May 29, 2023, at 60-minute intervals. A fluctuation of 1.95 m was observed across the 42-day period. The level logger and baro logger data is included in Appendix H of this report. It is expected that this fluctuation is largely attributable to seasonal changes in groundwater levels during the measurement period (tail end of the spring freshet), and would be noted in offsite private wells as well. Accounting for this measured fluctuation of 1.95 m, it remains McIntosh Perry's professional opinion that the proposed on-site groundwater usage (which itself is conservatively projected to generate a maximum site-wide drawdown of approximately 0.369 m under conditions of constant pumping, on top of the observed seasonal fluctuations) will not cause adverse impacts to surrounding wells, including those completed in shallower bedrock formations.

Inspection of a sample of well records accessed through the MECP's WWIS from the vicinity of the Site, as well as known records from the private well sampling conducted (198 Perth Road), typically show driller-reported static water levels to be 6-15+ m above the recommended pump intake depth. This opinion is based on this range, as well as the conservative nature of the Theis calculations performed for this property. Further, no measurable observation well drawdown in TW2, TW3, or TW5 was recorded during the pumping test at TW4.

3.5.7.1 Spring Water Level Measurements

Water levels at each test well were collected in the Spring (April and May, 2023) to assess the potential effects of seasonal fluctuations due to the Spring freshet. Water levels collected in 2021 are compared to the water levels collected in 2023, in Table 7 below:

Table 7: Spring Water Level Measurements

Test Well Location	Water Level	July 2021	April 2023	May 2023	March 2024	Maximum Seasonal Fluctuation (m)
TW2	m bgs	4.762	1.985	N/A	2.184	2.777
	m asl	138.142	140.919	N/A	140.72	
TW3	m bgs	9.481	6.651	8.12	6.72	2.830

	m asl	138.295	141.125	139.656	141.056	
TW4	m bgs	11.51	6.954	8.632	7.101	4.556
	m asl	136.789	141.345	139.667	141.198	
TW5	m bgs	11.446	8.66	9.96	8.668	2.786
	m asl	137.47	140.256	138.956	140.248	2.700

^{**}The data collected from TW1 was from a neighboring residential property.

The fluctuation between July 2021 and Spring 2023, at each test well, ranges from 2.777 – 4.556 m, with an average fluctuation of 3.23 m.

3.5.8 Water Quality

Laboratory Certificates of Analysis for all groundwater testing are presented in Appendix F. A summary of all analytical results and field parameters collected from on-Site (TW2, TW3, TW4 and TW5) and off-Site wells (TW1, 9477 Hwy 15, 9493 Hwy 15, 9578 Hwy 15, 220 Perth Road, 198 Perth Road, and 216 Church St) are included in Table 8 and 9, respectively, and appended to this report. Samples that were taken twice during the six-hour test at all test well locations are denoted by a '-1' (e.g. TW1-1) for the initial sample and denoted by a '-2' (e.g. TW1-2) for the second sample.

Laboratory-noted exceedances of Ontario Drinking Water Standards were as follows:

- Maximum Allowable Concentration (MAC) for total coliforms were exceeded in samples TW5
 (April 19, 2023; March 7, 2024), 220 Perth Road, 198 Perth Road (also exceeded for fecal
 coliforms), and 9477 Highway 15.
 - The exceedances of total coliforms at TW5 were followed by additional chlorination and development of the test well. Subsequent samples collected in March and April, 2024 indicate that TW5 is free of *E. Coli* and total coliforms. The offsite exceedances are indicative of potential surface impacts to the wells sampled, however it is noted that nitrates and organic nitrogen concentrations (also typical indicators of surficial impacts to groundwater) are not elevated at these locations. It is possible that the total coliform/fecal coliform impacts noted in 220 Perth Road, 198 Perth Road, and 9477 Hwy 15 are more isolated in nature (e.g. potentially due to well cap issues, rodent/insect intrusions, etc.).
- Aesthetic Objectives (AO) for colour were exceeded in samples TW1-1, TW1-2, and 9578 Hwy 15.

- The colour exceedances noted in TW1-1 and TW1-2 are considered aesthetic in nature, and are likely related to flocculation of minerals and metals in the sample as temperature and pH changed prior to laboratory analysis (hardness and/or iron and manganese were also noted to be elevated in these samples). These exceedances are not expected to generate any significant impacts to water quality, and are considered treatable with water softening and physical filtration. The offsite exceedance at 9578 Hwy 15 is noted to be marginal (6 mg/L).
- Operational Guidelines (OG) for hardness were exceeded in samples TW1-1, TW1-2, TW2-1, TW2-2, TW3-1, TW3-2, TW4-1, TW4-2, TW5 (March 21, 2024), 198 Perth Road, 216 Church St, and 9578 Hwy 15;
 - These exceedances are for a non-health related parameter. On-site concentrations are considered treatable by water softening.
- Organic nitrogen was calculated (total Kjeldahl nitrogen ammonia as nitrogen) and found to be above the OG at TW3 in samples collected in April and May of 2023, 216 Church St and 9578 Hwy 15;
 - Organic nitrogen is an indicator of potential surface impacts to groundwater. In the samples from TW3 which marginally exceeded the OG for organic nitrogen (April 18, 2023 and May 29, 2023), nitrates were also observed to be elevated (2.7 2.8 mg/L). However, in all samples collected from TW3, *E. Coli*, fecal coliforms, and total coliforms are non-detectable. In a subsequent sample collected from TW3 (February 1, 2024), nitrate was observed to be significantly lower (1.3 mg/L). Based on these factors, the overall risk of surface impacts to TW3 is deemed to be low.
- Aesthetic Objects (AO) for laboratory-reported turbidity were exceeded in TW1-1, TW1-2, TW2-1, TW3-1, TW3-2, and TW4-1. Laboratory results for turbidity are typically considered exaggerated due to the precipitation of iron and other low-solubility solids with changes in temperature and pH. As such, field measurements of turbidity were treated as a more accurate indicator of water quality and were compared to the AO of 1.0 NTU as set out in Procedure D-5-5. It is important to note that all field turbidity measurements were recorded below 1.0 NTU prior to the cessation of pumping (TW1: 0.87 NTU; TW2: 0.73 NTU; TW3: 0.89 NTU; TW4: 0.9 NTU; TW5: 0.09 NTU);
- Aesthetic Objects (AO) for **iron** were exceeded in samples TW1-1, TW1-2, and TW3-1.
- Aesthetic Objects (AO) for **manganese** were exceeded in samples TW1-1, TW1-2, TW2-1, TW2-2, and TW3-1.
- The health-related warning limit for sodium (20 mg/L) was exceeded in samples TW4-1, TW5-1, TW5-2, TW5 (March 21, 2024), 198 Perth, 216 Church St, and 9578 Hwy 15. Additionally, the MAC limit (200 mg/L) was also exceeded at 9578 Hwy 15.

- On-site concentrations of sodium are considered to be within a potable range (5.5 26.2 mg/L). Offsite concentrations of sodium appear to be elevated (30.1 409 mg/L) which may be related to road salting activities, exposed bedrock in ditches, and/or extensive use of sodium-based water softeners in the vicinity of Highway 15. It is reasonable to conclude that any on-site impacts to the supply aquifer due to de-icing, infiltration of salty water, or extensive water softening in the vicinity of the site would have been noted in the on-site test wells. It is recommended in the sections below that potassium chloride softening systems be used to avoid increasing sodium concentrations in on-site groundwater.
- O It is noted that 9578 Hwy 15 has a very high concentration of sodium. This wellhead was reported to be below grade by the landowner. The exact location of the well could not be identified, although it is known to be near the driveway/roadside. This adds further evidence to support localized impacts from road salt and/or water softening to wells which may be installed below grade, without vermin-proof caps, or otherwise unknown states of repair. The level of road-salting within the proposed subdivision is expected to be far less than the level of salting along Highway 15, which is an arterial road.
- The occurrence of **nitrate** concentrations in excess of 2 mg/L were observed in samples TW3-1, TW3-2, TW3 (April 18, 2023 and May 29, 2023), and 216 Church St. Based on follow-up sampling conducted in February and March 2024, the following test well observations were made across the site:
 - The concentration of nitrate in TW2 remained constant at non-detectable;
 - The concentration of nitrate in TW3 nitrate decreased from 2.7 mg/L to 1.3 mg/L;
 - o The concentration of nitrate in TW4 remained constant at non-detectable; and
 - The concentration of nitrate in TW5 increased slightly from 0.4 mg/L to 0.9 mg/L.

As noted in previous sections, 216 Church St was not available for a resample. Given the overall nitrate trends observed on-site, paired with the absence of *E. Coli*, fecal coliform, and total coliform detections in final samples collected from test wells, McIntosh Perry is of the opinion that background nitrate concentrations in the area are being influenced by existing private sewage treatment systems along Highway 15, and to a lesser extent, application of fertilizer on agricultural properties within the vicinity. The immediate area surrounding the proposed subdivision is developed, and on-site nitrate concentrations are observed to be stable and/or decreasing since 2021.

3.5.9 *Nitrate Impacts*

As discussed above, additional sampling was completed to evaluate the nitrate concentrations at the Site.

Between April 17-19, 2023, McIntosh Perry collected follow-up samples from TW1, TW2, TW3, TW4, and TW5 to confirm current Site conditions. Four (4) surrounding properties located at 9477 Hwy 15, 9493 Hwy 15, 9578 Hwy 15, and 220 Perth Road were also sampled to characterize the groundwater surrounding the Site.

Nitrate concentrations were observed to be relatively consistent with the 2021 results at TW2, TW3, and TW5. Nitrate concentrations at TW4 decreased from 1.6 mg/L (in 2021) to 0.1 mg/L (2023). Additionally nitrate concentrations at off-Site wells (9477 Hwy 15, 9493 Hwy 15, 9578 Hwy 15, and 220 Perth Road) were between 0.4 mg/L and 1.2 mg/L, with the exception of TW1 (non-detect, considered a test well for the purposes of this report).

Based on still-elevated nitrate concentrations at TW3 (2.4 – 2.8 mg/L) and variation in TW4 (decrease from 1.6 mg/L to 0.1 mg/L), McIntosh Perry completed another round of follow up samples at TW3, TW4, and TW5 in May of 2023. Nitrate concentrations at TW3 (May 29, 2023; 2.7 mg/L) remained similar to April 18, 2023 concentrations (2.8 mg/L). Nitrate concentrations at TW4 (May 29, 2023; non-detect) were consistent with April 19, 2023 concentrations (0.1 mg/L). Nitrate concentrations at TW5 (May 29, 2023; 0.4 mg/L) decreased from April 19, 2023 concentrations (1.0 mg/L).

A final round of additional sampling was conducted at the Site in February and March of 2024. TW2, TW4 and TW5 nitrate concentrations remained stable, while a significant decrease was observed at TW3 (2.7 mg/L to 1.3 mg/L).

Based on these results, it is clear that nitrate concentrations have either remained stable or decreased across the seasonal sampling completed from 2021 to 2024. McIntosh Perry is of the professional opinion that background nitrate concentrations in the area are being influenced by existing private sewage treatment systems along Highway 15, and to a lesser extent, application of fertilizer on agricultural properties within the area. The immediate area surrounding the proposed subdivision is developed, and the nitrate concentrations are observed to be stable and/or decreasing since 2021. Given the existing development in the vicinity of the site, it is reasonable to conclude that any on-site impacts to the supply aquifer due to the apparent main source of nitrates (offsite private sewage systems) would have been detected in on-site test wells. It is further noted that nitrate concentrations in private wells (offsite), which are situated on smaller lots than those proposed for this subdivision, are within an acceptable range.

3.6 Water Well Record Review

The MECP's WWIS database indicated sixty-two (62) water wells that are located within 500 m of the Site boundary. All wells are listed for domestic purposes, with the exception of one observation well, and one abandoned. The MECP WWIS records are shown on Figure 2, and data are summarized in Appendix D.

Most wells were completed in either limestone or sandstone, with isolated records listing driller-reported "shale" or "dolomite". After removing obviously erroneous records, the total depths of the wells ranged from

14.9 - 39.6 m, with an average depth of 25.6 m. Static water levels ranged from 0.3 - 13.7 m bgs and averaged at approximately 7.16 m bgs (MECP 2020).

A review of the MECP Water Well Information System (WWIS) well records within 500 m of the Site showed that the depth to bedrock ranges from 0-4.3 m bgs, with an average depth of approximately 0.83 m bgs.

4.0 TERRAIN ANALYSIS

4.1 Preamble

A series of 15 test pits were advanced under supervision of McIntosh Perry staff on December 14th, 2021, at various locations throughout the Site (see Figure 7 for test pit locations). The test pit locations were advanced by use of a mini-excavator (operated by an Owner's representative) to determine the exact depth of overburden, depth to shallow groundwater and to permit the collection of overburden soil samples for characterization. Various soil samples were taken throughout the test pits by use of hand shovel and by use of mini-excavator, where required.

4.2 General Soils Evaluations

Overburden across the Site was found to be relatively shallow (< 1.7 m below ground surface (bgs)), having an average thickness of 0.95 m bgs. It should be noted that shallow overburden (<= 0.17 m bgs) was encountered in TP10.

Soil types, total depth, and depth to shallow groundwater for each of the 15 test pits are summarized in Table 10, below.

Table 10: Summary of Test Pits

Test Pit ID	Total Depth (m)	Depth to Water (m)	Main Soil Characterization	Notes
TP-1	0.40	0.30	Shallow bedrock	-Wet
TP-2	1.70	1.10	Sandy gravel/ gravelly sand, some silt/clay	-Wet -Cobbles up to 15 cm diameter
TP-3	1.45	0.80	Sandy gravel/ gravelly sand, some silt/clay	-Wet -Cobbles up to 25 cm diameter
TP-4	0.70	-	Sandy gravel/ gravelly sand, some silt/clay	-
TP-5	0.38	-	Gravelly sand, trace silt/clay	-Red/brown
TP-6	0.45	-	Gravelly sand, trace silt/clay	-Brown
TP-7	0.70	0.60	Gravelly sand, trace silt/clay	-Wet -Red
TP-8	0.25	-	Shallow bedrock	-

Test Pit ID	Total Depth (m)	Depth to Water (m)	Main Soil Characterization	Notes
TP-9	0.30	-	Shallow bedrock	-
TP-10	0.17	-	Shallow bedrock	-
TP-11	0.30	-	Shallow bedrock	-
TP-12	0.60	-	Silty gravelly sand, trace clay	-
TP-13	0.85	0.75	Gravelly sand, trace silt/clay	-Brown
TP-14	1.20	-	Silty gravelly sand, trace clay	-Very dry
TP-15	0.65	0.5	Sandy gravel/ gravelly sand, some silt/clay	-Wet -Cobbles

4.2.1 Overburden Characterization

Soil and shallow groundwater conditions for each of the 15 test pits are summarized in Appendix I. Test pit locations are outlined in Figure 7. Soil characterization is summarized in Figure 8.

Boundaries between zones on the logs are often not discrete but transitional and have been interpreted. Subsurface conditions described have various degrees of precision based on the frequency of test pits, uniformity of subsurface conditions and number of samples collected. Where conditions at locations other than the test pit locations are reported, these are inferred and may vary from the conditions at the test pits.

The soil descriptions in this report are based on commonly accepted classification and identification employed in engineering practice. McIntosh Perry employed judgement in the classification and description of soil and may not be exact but are accurate to what is common in current engineering practice.

Grain size distribution testing by an accredited geotechnical laboratory was undertaken on representative samples of the soils encountered. Refer to Appendix I for particle size distribution reports.

4.2.1.1 Topsoil

A layer of topsoil was encountered within all 15 test pits. The topsoil generally consists of dark brown sand and silt mix with organic material and had a varying thickness between 0.05m and 0.60m.

In test pit TP10, a thin layer of topsoil (0.17 m) was located directly on top of bedrock. In all other test pits, soil was encountered at varying thicknesses were located under the topsoil layer.

4.2.1.2 Shallow Bedrock

Soil was characterized as 'shallow bedrock' where less than 25 cm of native soil material was present under the topsoil. This occurred within test pits TP1, TP8, TP9, TP10 and TP11.

Test pits TP1, TP8, TP9, TP10 and TP11 are located within the East and North-East portions of the site (Figure 8).

4.2.1.3 Sandy Gravel/Gravelly Sand, Some Silt/Clay

Native deposits of sandy gravel/gravelly sand, some silt/clay were encountered within test pits TP2, TP3, TP4, and TP15, under the topsoil layer.

Test pits TP2, TP3, and TP4 are located within the East portion of the Site. Test pit TP15 is located within the South-West portion of the Site (Figure 8).

Sandy gravel/gravelly sand was also encountered within test pit TP1 from 0.20 m bgs to 0.40 m bgs.

4.2.1.4 Gravelly Sand, Trace Silt/Clay

Native deposits of gravelly sand, trace silt/clay were encountered within test pits TP5, TP6, TP7, and TP13.

The gravelly sand layer in both TP5 and TP7 was described as red/ brown. In TP6, a shelf of weathered bedrock was breaking off in larger chucks (up to 0.6 m) directly under the topsoil layer. Beside the bedrock shelf was a layer of brown sand of from 0.15 m to 0.45 m bgs. The sand layer in TP13 is described as brown gravelly sand.

Test pits TP5, TP6, TP7, and TP13 are located within the West and South-West portions of the site (Figure 8).

4.2.1.5 Silty Gravelly Sand, Trace Clay

Native deposits of silty gravelly sand, trace clay were encountered within test pits TP12 and TP14.

Both test pits TP12 and TP14 are located within the North, North-West portion of the Site.

The silty gravelly sand layer located within TP12 is described as grey. The silty gravelly sand layer within TP14 is located under a relatively thick layer of topsoil (0.6 m). The silty gravelly sand layer is described as having a dry and crumbly texture.

4.2.2 Soil Classification for Private Sanitary Servicing

Comparison of the soil classification for the Unified Soil Classification as provided in the Ministry of Municipal Affairs and Housing (MMAH) Supplementary Standard SB-6: Time and Soil Descriptions, reveals that the main native soils assessed on-site for **Test Pits TP2 through TP7**, and **Test Pits TP12 through TP15** fall within either of the following:

• GW-SW: Well graded gravel and sands mixtures, some fines

- \circ According to Table 2 of SB-6, the SW group of soils has a coefficient of permeability (K) of 10^{-1} to 10^{-4} cm/sec with a percolation time (T) of 1 to 12 min/cm.
 - Due to the permeable to medium permeability of this soil type, it is deemed acceptable as the native receiving soil for a proposed Class 4 sewage systems.
- SP: Poorly graded sand, gravelly sand, little or no fines
 - \circ According to Table 2 of SB-6, the SP group of soils has a coefficient of permeability (K) of 10^{-1} to 10^{-3} cm/sec with a percolation time (T) of 2 to 8 min/cm.
 - Due to the medium permeability of this soil type, it is deemed acceptable as the native receiving soil for a proposed Class 4 sewage systems.
- SM: Silty sand, sand-silt mixtures
 - \circ According to Table 2 of SB-6, the SM group of soils has a coefficient of permeability (K) of 10^{-3} to 10^{-5} cm/sec with a percolation time (T) of 8 to 20 min/cm.
 - Due to the medium to low permeability of this soil type, it is deemed acceptable as the native receiving soil for a proposed Class 4 sewage systems.

Please note that for the purposes of this report, a minimum thickness of 0.25 m of soil located under the topsoil and above the bedrock was used when establishing the main soil type for each test pit. Given the hydrogeological sensitivity of the site and the variability of overburden soil thickness on-site (i.e. 0.17m to 1.7m total depth), the following recommendations are to be incorporated in the design of the individual sewage systems servicing each lot:

- Areas with less than 0.25m of soil under the topsoil have been identified as bedrock in the report; in these areas, it is recommended that an imported clay layer (minimum <u>0.15m</u> in depth) be installed on the bedrock surface before placing leaching bed fill for sewage systems to prevent the possibility of short-circuiting of sewage effluent to the underlying bedrock aquifer.
- Where thicker overburden thickness is present (i.e. greater than 0.25m of soil under the topsoil is present) and the native undisturbed overburden is scheduled to remain in place as part of the sewage system design, the sewage system design may as an alternative mitigation measure to the imported clay layer be designed with an increased minimal vertical clearance requirements to high ground water table or rock by an additional 300mm in addition to the minimum requirements by the OBC or BMEC-approvals for the selected type of Class 4 sewage system used in individual sewage system designs for each lot (i.e. min. 900mm vertical separation requirement for absorption trench as per § 8.7.3.2 of the Ontario Build Code (OBC) becomes min. 1200mm, while min. 600mm vertical separation for Type A Dispersal Beds as per 8.7.7.1.(6).(d) becomes 900mm). This recommendation ensures further effluent polishing in the vertical unsaturated zone below the leaching bed.

Refer to Figure 8 for a distribution of soil types throughout the Site.

4.3 Contaminant Attenuation

As part of the subdivision application process as sewage system (septic) impact assessment was completed as per MECP requirements. The MECP Procedure D-5-4 (Technical Guideline for Individual On-site Sewage Systems: Water Quality Impact Risk Assessment) outlines the following steps to be completed as part of the impact assessment:

- Step 1 Lot Size Consideration
- Step 2 System Isolation Consideration
- Step 3 Contaminant Attenuation Considerations

The following outlines the results of the sewage system impact assessment undertaken by McIntosh Perry.

Step 1 - Lot Size Consideration

The proposed new subdivision consists of lots that are on average approximately 0.66 hectares each in size. Accordingly, McIntosh Perry considers that there does not exist enough spatial area to naturally attenuate nitrate-nitrogen to acceptable concentration based on MECP Procedure D-5-4, as the average size of the lots created would not be greater than 1 hectare. Due to this, a review of Step 2 – System Isolation Consideration was undertaken.

Step 2 - System Isolation Consideration

As previously outlined, the lots to be created are on average 0.66 hectares in size, therefore McIntosh Perry assessed whether System Isolation Considerations were applicable to the proposed residential subdivision. If it can be demonstrated that the sewage system effluent is hydrogeologically isolated from the existing or potential drinking water supply aquifer, then the risk to groundwater is considered to be low. The system isolation review needs to account for lands that extend up to 500 metres from the Site.

Based on a review of available geological information and mapping, in conjunction with site observations made during the Terrain Analysis, the Site cannot be determined to be hydrogeologically isolated and, as such, the consideration for system isolation of sewage system effluent from the groundwater supply aquifer is not applicable to this site.

Step 3 – Contaminant Attenuation Considerations

Since neither lot size nor system isolation considerations apply to the proposed severances, a predictive nitratenitrogen attenuation assessment was undertaken to determine if sufficient attenuation of nitrate-nitrogen could be achieved on the subject site.

The Thorthwaite Water Balance method, in conjunction with local climatic data available from Environment Canada for Ottawa's MacDonald-Cartier Internal Airport station (Site Climate ID: 6106000), was used to estimate the net potential infiltration for the proposed residential subdivision.

The nitrate concentration at the site boundaries was calculated assuming a standard domestic strength sewage nitrate-nitrogen concentration (C_e) of 40 mg/L at the point of subsurface discharge as per procedure D-5-4.

Please see below for information regarding other inputs/parameters used in the analysis (refer to Appendix J for more information):

- A water surplus (Ws) value of 333.87 mm/yr was calculated based on 1981-2010 Climate Normal data for Ottawa's MacDonald -Cartier Int'l A (YOW) station (Site Climate ID: 6106000). This station represents the nearest station to the site with data quality that meets the "3 and 5 rule" per the United Nation's World Meterological Organization (WMO) 30 Year Standard Normals;
- An infiltration factor (I_f) of **0.649** was calculated as per Table 2 of MECP's document titled "MOEE
 Hydrogeological Technical Requirements for Land Development Applications", dated April 1995. The
 factors used to calculate the Infiltration Factor (If) and the associated rational for selection are
 presented below:
 - A topographic factor of 0.1875 was used for rolling land (0.7% slope).
 - A soil factor of 0.3113 was used. This factor represents a weighted average of the soil conditions on-site, with approximately 26% of the site consisting of topsoil over shallow bedrock (infiltration factor of 0.10), 11% of the site consisting of silty gravelly sand (infiltration factor of 0.3), with the remaining 63% of the site consisting of gravelly sand or sand-gravel mixtures (infiltration factor 0.40) having a minimum depth of 0.25 m.
 - A cover factor of 0.15 was used as the site is expected to consist of a mix of woodland and cultivated land after development.
- Available infiltration (I) was calculated by multiplying the water surplus (Ws) by the infiltration factor (If). This yielded an infiltration value of 0.216619 m/yr.
- The infiltration area (A) was determined to be 24.14 ha (241,443 m²). This consists of the total site area (26.85 ha) minus the proposed road right-of-way (2.119 ha) and 200 m² for each of the proposed houses.
- The dilution water (D_w) available was calculated as 52,301 m³/yr (143,291 L/day) by multiplying the infiltration area (A) with the available infiltration (I).
- Background nitrate concentration (C_b) of 2.8 mg/L was used, which represents the maximum concentration found within all test well samples collected (refer to Appendix F).

Based on the above-noted information, in order to maintain the nitrate concentration at the downgradient property boundary (C_w) below the Ontario Drinking Water Objective (ODWO) of 10 mg/L for nitrate-nitrogen, the maximum number of lots in the proposed residential subdivision would be as follows:

• Assuming standard domestic strength sewage nitrate-nitrogen concentration (C_e) of 40 mg/L at the point of subsurface discharge: N = **31.454 severed lots**.

As can be seen above, the property can accommodate a subdivision of up to 30 lots to proceed while ensuring the Ontario Drinking Water Objective (ODWO) of 10 mg/L for nitrate-nitrogen is not exceeded. The proposed 30 lot residential subdivision yields a calculated nitrate-nitrogen concentration of **9.725 mg/L** at the property boundary.

It should be noted that the above-noted analysis does not account for the possible use of Low Impact Development (LID) into the developed Site's stormwater management strategy. The use of LID, such as infiltration trenches, are typically used to reduce stormwater runoff by increasing groundwater recharge, which in turn would be expected to be associated with a reduction of the predicted nitrate-nitrogen concentration compared to results presented from the calculations above.

5.0 SUMMARY OF CONDITIONS

5.1 Preamble

The Site is located in the western portion of the hamlet of Franktown within the Township of Beckwith in central Eastern Ontario, south of the Town of Carleton Place (Figure 1). The site is bounded by Fourth Line Road to the north, Perth Road to the south, and is located approximately 275 m west of Highway 15.

The Site currently exists predominantly as undeveloped forested/shrub land with the exception of a single residential dwelling located on the northern portion of the Site. There are residentially developed lands immediately north and south of the Site along Fourth Line Road and Perth Road, as well as to the east along Highway 15; otherwise, the surrounding land use is predominately forested land.

According to Ontario Geological Survey (OGS) regional mapping, surficial overburden at the Site is thin, and is characterized by Paleozoic bedrock (OGS, 2022). This classification is consistent with on-site observations made by McIntosh Perry. Based on OGS 2022 data, the underlying bedrock is classified as dolostone and sandstone of the Beekmantown Group, which is consistent with MECP WWIS Records (MECP 2020).

The 1981-2010 mean annual precipitation is approximately 943.4 mm with 223.5 cm as snow, and the mean daily temperature is 6.4 °C (Environment Canada Climate Normals for Ottawa MacDonald-Cartier International Airport).

The Site currently consists of forested land and several wetlands and has likely never been contemporarily developed. On-site elevation ranges between 141 and 149 metres above sea level (m asl). The topography of the Site is generally flat.

5.2 Regional Hydrogeology

The Site is relatively flat. Wetland areas appear to be present around the center of the Site. A small local waterbody is also present on Site, as seen in Figure 2. The Franktown Swamp, which forms part of the Upper Jock River (part of the Mississippi River system), is the closest permanent waterbody to the Site and is located approximately 550 m east of the Site at its closest point. On a local scale, shallow groundwater flow cannot be determined fully due to limited data, however there is likely a western and northwestern flow component and potentially more localized flow patterns toward on-site water features (pond, wetland). On a regional scale, data obtained from the Provincial Groundwater Monitoring Network (PGMN) accessed through the MECP's Source Water Protection Atlas (2009-2019 dataset) suggest groundwater in the deeper bedrock formation has a southern and eastern flow component (PGMN 2024). Interpretation of regional data trends to represent actual flow directions in the immediate vicinity of the Site should be made with caution; regional groundwater flow trends can be unreliable on a smaller scale in highly fractured bedrock systems, as is the case for the Site.

5.3 Site Hydrogeology

A review of topographic data, geological maps, and field notes show that the property is generally flat with some local sloping down towards the northwest. Shallow groundwater and surface water likely drain in this direction. On a local scale, shallow groundwater flow cannot be determined fully due to limited data, however there is likely a northwestern flow component and potentially more localized flow patterns toward on-site water features (pond, wetland). In most areas of the Site, the terrain appears to be well-drained.

Based on OGS 2020 data, the underlying bedrock is classified as dolostone and sandstone of the Beekmantown Group, which is consistent with MECP WWIS Records (MECP 2020).

A review of the MECP Water Well Information System (WWIS) well records within 500 m of the Site showed that the depth to bedrock ranges from 0-4.3 m bgs, with an average depth of approximately 0.83 m bgs. Where noted in the well records, bedrock is typically referred to as either "sandstone" or "limestone" by the driller (Appendix C).

The bedrock aquifer was found to have high yield and exhibited good recovery during pumping tests. There was very little groundwater level movement observed in observation wells during the pumping tests, showing minimal well interference across the Site.

5.4 Water Supply

Groundwater testing at the site has shown that the supply aquifer is of acceptable yield and quality. Based on calculations following the Farvolden and Moell methods, on-site test wells could theoretically supply a twenty-year safe yield ranging from 84.7 - 3,518.2 L/min, as shown in Table 6. It is McIntosh Perry's professional opinion that all test wells are capable of repeat pumping at the minimum required test rate under Procedure D-5-5.

All health-related exceedances in on-site test wells have been followed-up and rectified with additional well improvements (i.e. chlorination) and development. Final samples from all test wells indicate that groundwater is potable.

Several additional ODWS Aesthetic Objectives (AO) were exceeded. These exceedances were noted for colour, lab-reported turbidity, iron, manganese, and the health-warning limit for sodium. It is important to note that field-measured turbidity was noted to be below 1.0 NTU at all wells during the pumping tests, with the exception of marginal and isolated exceedances in the laboratory-reported data. Field-measured turbidity is generally considered to be more reliable than laboratory-reported data due to changes in temperature and pH that can occur during sample transport.

Additionally, two Operational Guideline (OG) exceedances were noted for hardness and organic nitrogen. Exceedances of these Operational Guideline are considered normal for the region and are reasonably treatable.

It is important to note that water with a hardness above 300 mg/L is considered very hard. If water softening is desired, the use of potassium salts (i.e. KCl) is recommended. With the use of conventional water softeners, sodium concentrations will be elevated, which may affect persons on a sodium-reduced diet.

The occurrence of **nitrate** concentrations in excess of 2 mg/L (1.1 - 2.8 mg/L) were observed in samples TW3-1, TW3-2, TW3 (April 18, 2023 and May 29, 2023), and 216 Church St. Based on follow-up sampling conducted in April and May of 2023, and again in February and March 2024, nitrate concentrations appear to be either stable or decreasing at the Site.

It has been shown that the bedrock aquifer is suitable for supplying the needs of 30 lots in the proposed development in terms of both quantity and quality when incorporating standard on-site sewage systems to service the individual lots.

Based on typical residential demand, it is not expected that the subdivision will cause any water supply issues for the surrounding private wells that exist in the vicinity. Based on both a theoretical Theis calculation prepared for the site (showing a maximum 0.369 m site-wide drawdown if all proposed wells were to be pumped simultaneously) as well as static groundwater level fluctuations measured at the site over a 42-day period with a level logger (maximum change of 1.95 m), it remains McIntosh Perry's professional opinion that the proposed on-site groundwater usage will not cause adverse impacts to the yield of surrounding wells, including those completed in shallower bedrock formations. This opinion is based on the typical driller-reported static water levels to be 6-15+ m above the recommended pump intake depth in private wells surrounding the Site, as well as the conservative nature of the Theis calculations performed for this property.

6.0 RECOMMENDATIONS

6.1 Water Supply

Well Construction

- The four newly installed test wells (TW2, TW3, TW4, and TW5) are suitable for supplying groundwater for domestic use at the Site. All future wells should adhere to the requirements of O. Reg. 903 (Wells), as amended, with regards to casing length, positive drainage, stickup height, etc.
- Any newly installed wells at the Grizzly Homes Subdivision will require a minimum of 12 m of casing to protect against surface water and/or shallow groundwater intrusion. 12 m of casing is recommended to generally match the construction of on-site test wells used in this assessment. 12 m of casing is expected to provide suitable wellhead protection from surface impacts (e.g. nitrates and bacteria) due to private sewage treatment systems and other runoff, and is not expected to interfere with groundwater yield (water was found between 26.5 35.4 m bgs). Wells must adhere to all other requirements of O.Reg. 903, as outlined above.
- Wells to be used for water supply purposes at the proposed subdivision must have grouting
 inspections conducted under the supervision of a qualified professional (P.Eng. or P.Geo.).
- The test wells should be maintained prior to domestic use.

Water Quality and Treatment

- Water generally meets all applicable health-related standards at the present time.
- Aesthetic parameters such as colour, iron, and manganese can be readily treated.
 - o Colour can be treated using an activated carbon or physical filtration.
 - Iron and manganese can be treated through water softeners or manganese greensand filters, oxidation with filtration through proprietary filter media, or chlorination followed by sand or multimedia filtration, depending on the concentrations.
- If water softening is desired, the use of potassium salts (i.e. KCI) is recommended. With the use of conventional water softeners, it is important to note that sodium concentrations will be elevated.
 - It is important to note that water with a hardness above 300 mg/L is considered very hard. The ODWS states that groundwater with hardness that exceeds 500 mg/L is unacceptable for domestic purposes.
- Due to the low field turbidity observed in the fully developed test wells, a UV system may be used as a precaution against bacteriological impacts.
- Prior to occupation, it is recommended that the Client notify the local Medical Officer of Health of the sodium exceeding the health-related warning limit at TW5.

6.2 Wastewater Treatment

Private Sewage Systems

- Approval for individual on-site sewage systems will be governed by the OBC as it is understood that the Daily Design Flow proposed system will be less than 10,000 litres per day/lot.
- Based on the general characterization of overburden in the vicinity of the proposed sewage systems, it is expected that imported leaching bed fill will be necessary on a large portion of the lots to provide the required vertical separation from shallow groundwater and/or bedrock layer.
 - Areas with less than 0.25m of soil under the topsoil have been identified as bedrock in the report; in these areas, it is recommended that an imported clay layer (minimum <u>0.15m</u> in depth) be installed on the bedrock surface before placing leaching bed fill for sewage systems to prevent the possibility of short-circuiting of sewage effluent to the underlying bedrock aguifer.
 - Where thicker overburden thickness is present (i.e. greater than 0.25m of soil under the topsoil is present) and the native undisturbed overburden is scheduled to remain in place as part of the sewage system design, the sewage system design may as an alternative mitigation measure to the imported clay layer be designed with an increased minimal vertical clearance requirements to high ground water table or rock by an additional 300mm in addition to the minimum requirements by the OBC or BMEC-approvals for the selected type of Class 4 sewage system used in individual sewage system designs for each lot (i.e. min. 900mm vertical separation requirement for absorption trench as per § 8.7.3.2 of the Ontario Build Code (OBC) becomes min. 1200mm, while min. 600mm vertical separation for Type A Dispersal Beds as per 8.7.7.1.(6).(d) becomes 900mm). This recommendation ensures further effluent polishing in the vertical unsaturated zone below the leaching bed.
- The proposed lot sizes are sufficient to meet the requirements of Procedure D-5-4, assuming that each lot is serviced by an OBC-approved Class 4 sewage system.
- Any sewage systems must be constructed with all appropriate setbacks, treatment units and stipulations as per applicable Ontario Regulations. Additionally, as outlined in the Environmental Impact Statement by Gemtec, all sewage systems must be located no closer than 30 m from the high water mark of any surface water feature and not located in areas of exposed bedrock.

7.0 LIMITATIONS

This report has been prepared, and the work referred to in this report has been undertaken by, McIntosh Perry for the Client. It is intended for the sole, and exclusive use of the Client with respect to the stated purpose of the work carried out by McIntosh Perry.

The report may not be relied upon by any other person or entity without the express written consent of McIntosh Perry. Any use which a third party makes of this report, or any reliance on decisions made based on it, without a Reliance Letter, are the responsibility of such third parties. McIntosh Perry accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report or the information contained within it.

The investigation undertaken by McIntosh Perry with respect to this report and any conclusions or recommendations made in this report reflect McIntosh Perry's judgment based on the Site conditions observed at the time of the Site investigations, inspections, and/or sampling on the date(s) set out in this report, and on information available at the time of the preparation of this report. Conditions such as ground cover, weather, physical obstructions, etc. may influence conclusions or recommendations made in this report. McIntosh Perry does not certify or warrant the environmental status of the property.

This report has been prepared for specific application to this Site and it may be based, in part, upon visual observation of the Site, subsurface investigation at discrete locations and depths, and/or specific analysis of specific chemical parameters and materials during a specific time interval, all as described in this report. Unless otherwise stated, the findings cannot be extended to previous or future Site conditions, portions of the Site which were unavailable for direct investigation, Site locations, subsurface or otherwise, which were not investigated directly, or chemical parameters, materials, or analysis which were not addressed or performed. Substances other than those addressed by the investigation described in this report may exist at the Site, substances addressed by the investigation may exist in areas of the Site not investigated, and concentrations of substances addressed which are different than those reported may exist in areas other than the locations from which samples were taken.

If Site conditions or applicable standards change, or if any additional information becomes available at a future date, modifications to the findings, conclusions and recommendations in this report may be necessary.

We trust that this information is satisfactory for your present requirements. Should you have any questions or require additional information, please do not hesitate to contact the undersigned.

Respectfully submitted,

McIntosh Perry Consulting Engineers Ltd.

Menior Black

Monica Black, B.Sc. Environmental Scientist (343) 925-0179 m.black@mcintoshperry.com

Angela Gulley, P.Geo.

Argel Hiller

Sr. Hydrogeologist

a.gulley@mcintoshperry.com

15Apr2024

JORDAN D. BOWMAN & PRACTISING MEMBER

3315

Jordan Bowman, P.Geo., P.Biol. Manager, Geo-Environmental (613) 714-4602 j.bowman@mcintoshperry.com

Patrick Leblanc, P.Eng.
Sr. Environmental Engineer
p.leblanc@mcintoshperry.com

Ref.: \mcintoshperry.local\share\Perth\MPCE JOBS\MPCE Projects\2022\CCO\CCO-22-0256 - Grizzly Homes - Franktown Subdivision Review\Hydro G\Report\06 Report 2024\CCO-22-0256_Grizzly Homes Hydro G_Rev.2_15Apr2024.docx

8.0 REFERENCES

OGS Earth, 2020. Ontario Ministry of Northern Development, Mines and Forestry, - Ontario Geological Survey Earth – for Google Earth. Overburden classification data for Eastern Ontario.

OGS Earth, 2020. Ontario Ministry of Northern Development, Mines and Forestry, - Ontario Geological Survey Earth – for Google Earth. Bedrock classification data for Eastern Ontario.

Provincial Groundwater Monitoring Network, accessed via MECP Source Protection Information Atlas (2024), https://www.ontario.ca/page/source-protection

Environment Canada Weather Normals 1981-2010 for Ottawa CDA, ON), https://climate.weather.gc.ca/climate_normals/index_e.html

Freeze, R.A. and Cherry, J.A., 1979, Groundwater, Prentice Hall.

TABLES

Test Well 1								
Pumping Test:	TW1							
Date:		January 18, 2022						
Time Elapsed	Turbidity	рН	Conductivity	Temperature	TDS	Free Chlorine		
(min)	(NTU)		(ms/cm)	(°C)	(ppm)	(mg/L)		
15	9.6	6.51	N/A	9.97	0.345			
26	2.4	6.67	0.543	8.17	0.347			
36	2.2	6.65	0.545	7.9	0.348			
50	1.7	6.68	0.548	7.14	0.352			
60	1.8	7.14	0.549	7.08	0.351			
120	1.7	7.35	0.546	8.03	0.351			
180	1.1	7.45	0.535	8.78	0.342			
240	1.2	7.26	0.535	8.78	0.343			
300	1.4	7.18	0.538	8.6	0.344			
360	0.82	7.27	0.54	8.37	0.346			
Notes:		Flow rate measured with bucket and stopwatch (21 I/min)						

Follow up Sample	TW1							
Date:		April 18, 2023						
Time Elapsed	Turbidity	рН	Conductivity	Temperature	TDS	Free Chlorine		
(min)	(NTU)		(ms/cm)	(°C)	(ppm)	(mg/L)		
4	1.5	7.77	0.585	8.94	0.374			
10	0	7.66	0.588	8.19	0.376			
15	0	7.42	0.585	8.31	0.374			
22	0	7.51	0.585	8.38	0.375	<0.02		
Notes:		Flow ra	te measured wi	th bucket and sto	opwatch (25.5 L/mir))		

Test Well 2												
Pumping Test	TW2											
Date:			Já	anuary 13, 2021								
Time Elapsed	Turbidity	рН	Conductivity	Temperature	TDS	Free Chlorine						
(min)	(NTU)		(ms/cm)	(°C)	(ppm)	(mg/L)						
23	12.3	6.14	0.487	10.1	245							
60	11.6	6.53	0.493	9.8	247							
120	4.48	6.14	0.503	10	252							
180	2.87	6.13	0.503	10.2	250							
240	2.21	6.52	0.497	10.3	249							
300	1.5	6.42	0.494	10.3	248							
360	0.73	6.71	0.502	9.9	251							
Notes:		Flow ra	te measured wi	th bucket and st	opwatch (87.3 l/mii	Flow rate measured with bucket and stopwatch (87.3 l/min)						

		TW2							
Date:		April 18, 2023							
Time Elapsed	Turbidity	рН	Conductivity	Temperature	TDS	Free Chlorine			
(min)	(NTU)		(ms/cm)	(°C)	(g/L)	(mg/L)			
7	220	8.36	0.572	7.19	0.336				
98	31.6	7.77	0.607	7.38	0.388				
108	7.9	7.34	0.59	7.39	0.377				
170	1.5	7.4	0.594	7.22	0.380				
173	0.9	7.39	0.593	7.23	0.380	0.02			
Notes:		Flow rate measured with bucket and stopwatch (14 I/min)							

	TW2							
Date:			Ja	anuary 31, 2024				
Time Elapsed	Turbidity	рН	Conductivity	Temperature	TDS	Free Chlorine		
(min)	(NTU)		(ms/cm)	(°C)	(g/L)	(mg/L)		
19	47.4	7.11	0.666	7.64	0.427			
34	8.4	7.34	0.667	7.02	0.427			
47	6.6	7.33	0.68	7.33	0.435			
63	5.6	7.36	0.684	7.33	0.439			
78	4.5	7.17	0.676	7.24	0.434			
95	4.1	7.33	0.682	7.35	0.437			
124	4.1	7.3	0.671	8.37	0.430			
135	3.1	7.27	0.672	8.5	0.430			
145	2.8	7.2	0.671	8.57	0.430			
165	2.5	7.31	0.671	8.4	0.430			
195	1.9	7.36	0.68	7.92	0.435			
Date:			F	ebruary 1, 2024				
0	13.10	7.10	0.641	9.15	0.410			
12	6.90	7.25	0.654	8.64	0.418			
27	3.30	7.07	0.663	8.59	0.425			
72	1.70	7.06	0.672	8.77	0.430			
87	1.50	7.12	0.666	8.84	0.426			
113	1.10	7.14	0.668	8.69	0.427			
165	0.90	7.15	0.669	8.52	0.428	0.04		

Test Well 3								
Pumping Test:	TW3							
Date:				July 14, 2021				
Time Elapsed	Turbidity	рН	Conductivity	Temperature	TDS	Free Chlorine		
(min)	(NTU)		(ms/cm)	(°C)	(ppm)	(mg/L)		
20	28.7	6.26	0.552	9.4	274			
60	21	6.58	0.553	9.2	276			
120	11.4	6.35	0.547	9.7	275			
180	11.8	6.81	0.547	10.0	274			
240	9.66	6.28	0.546	10.2	272			
300	8.22	6.67	0.549	9.6	275			
360	0.89	6.68	546	9.8	270			
Notes:		Flow ra	ate measured w	rith bucket and s	topwatch (90 l/min)			

Follow Up Sample		TW3						
Date:				April 18, 2023				
Time Elapsed	Turbidity	рН	Conductivity	Temperature	TDS	Free Chlorine		
(min)	(NTU)		(ms/cm)	(°C)	(g/L)	(mg/L)		
8	1.2	7.38	0.551	7.55	0.354			
15	290	7.22	0.629	7.49	0.404			
22	18.8	7.23	0.638	7.47	0.408			
31	3.9	7.25	0.639	7.5	0.409			
41	2.5	7.27	0.64	7.45	0.41			
52	1.7	7.20	0.659	7.4	0.409			
63	10.1	7.30	0.641	7.45	0.410			
73	14	7.29	0.644	7.4	0.412			
82	3.5	7.28	0.645	7.41	0.413			
92	2.7	7.27	0.645	7.4	0.412			
104	2.2	7.27	0.645	7.42	0.413			
123	0.5	7.28	0.648	7.4	0.415	0.02		
Notes:		Flow ra	te measured wi	th bucket and st	opwatch (16.5 l/min)		

Follow up Sample	TW3							
Date:		May 29, 2023						
Time Elapsed	Turbidity	рН	Conductivity	Temperature	TDS	Free Chlorine		
(min)	(NTU)		(ms/cm)	(°C)	(ppm)	(mg/L)		
19	2.87	7.31	0.624	9.7	293			
33	0.48	7.19	0.596	10	288			
48	N/A	7.22	0.581	9.3	288			
66	0.86	7.06	0.58	9.4	283			
72	0.23	7.07	0.569	9.4	284			
99	0.26	7.1	0.57	9.2	286	<0.02		
Notes:		Flow rate measured with bucket and stopwatch (15 L/min)						

Table 8
Summary of Field Parameters
Grizzly Homes, Beckwith, Ontario

Follow up Sample		TW3							
Date:		February 1, 2024							
Time Elapsed	Turbidity	рН	Conductivity	Temperature	TDS	Free Chlorine			
(min)	(NTU)		(ms/cm)	(°C)	(g/L)	(mg/L)			
5	7	7.36	0.662	7	0.423				
33	1.8	7.28	0.665	7.3	0.425				
44	1.4	7.24	0.659	8.14	0.422				
55	1.2	7.25	0.657	8.54	0.421				
102	0.9	7.16	0.655	8.57	0.41	< 0.02			

Test Well 4								
Pumping Test at:	TW4							
Date:			Se	ptember 9, 2021				
Time Elapsed	Turbidity	рН	Conductivity	Temperature	TDS	Free Chlorine		
(min)	(NTU)		(ms/cm)	(°C)	(ppm)	(mg/L)		
5	73.5	6.72	0.552	8.9	276			
34	35	6.7	0.549	8.7	276			
60	22.1	6.74	0.558	8.9	278			
120	5.86	6.63	0.547	9	273			
180	2.62	N/A	0.548	9	274			
240	1.38	6.43	0.545	9.1	273			
300	1.5	6.6	0.539	9.2	270			
360	0.9	6.6	0.543	9	272			
Notes:		Flow rate measured with bucket and stopwatch (90 l/min)						

Follow Up Sample		TW4							
Date:		April 19, 2023							
Time Elapsed	Turbidity	Turbidity pH Conductivity Temperature TDS From							
(min)	(NTU)		(ms/cm)	(°C)	(g/L)	(mg/L)			
3	33.8	6.27	0.255	11.31	0.166				
11	49.5	7.59	0.7	8.7	0.498				
21	46.2	7.34	0.501	8.03	0.32				
29	9.3	7.41	0.697	7.82	0.446				
44	2.9	7.4	0.707	7.64	0.452				
58	3.4	7.46	0.706	7.49	0.459				
73	3.2	7.4	0.703	7.45	0.45				
91	1	7.35	0.703	7.42	0.45				
96	0.9	7.35	0.701	7.36	0.449	< 0.02			
Notes:		Flow rate measured with bucket and stopwatch (18 I/min)							

Table 8
Summary of Field Parameters
Grizzly Homes, Beckwith, Ontario

Follow Up Sample		TW4						
Date:		May 29, 2023						
Time Elapsed	Turbidity	рН	Conductivity	Temperature	TDS	Free Chlorine		
(min)	(NTU)		(ms/cm)	(°C)	(ppm)	(mg/L)		
5	0.78	7.54	0.458	9.6	230			
90	0.71	7.11	0.621	9.3	311			
105	0.58	7.11	0.623	9.0	311	<0.02		
Notes:		Flow rate measured with bucket and stopwatch (14 I/min)						

Follow Up Sample	TW4							
Date:				March 7, 2024				
Time Elapsed	Turbidity	рН	Conductivity	Temperature	TDS	Free Chlorine		
(min)	(NTU)		(ms/cm)	(°C)	(g/L)	(mg/L)		
1	71.8	7.16	0.763	8.72	0.488			
10	15.8	7.04	0.76	8.94	0.486			
27	6	6.99	0.759	8.89	0.486			
42	12.8	6.99	0.763	8.91	0.488			
70	5.2	7.07	0.761	8.92	0.487			
82	4.4	7.1	0.754	8.93	0.483			
101	2.9	7.11	0.752	8.92	0.481			
170	7.49	7.49	0.745	9.28	0.477			
175	7.28	7.28	0.749	9.12	0.479			
189	7.22	7.22	0.748	8.96	0.478			
228	7.21	7.21	0.744	8.91	0.477			
303	7.54	7.54	0.747	9.18	0.477			
309	0.9	7.3	0.739	8.96	0.473	0.03		
Notes:		Flow rate measured with bucket and stopwatch (18 I/min)						

Test Well 5								
Pumping Test:	TW5							
Date:				July 15, 2021				
Time Elapsed	Turbidity	рН	Conductivity	Temperature	TDS	Free Chlorine		
(min)	(NTU)		(ms/cm)	(°C)	(ppm)	(mg/L)		
15	1.74	6.65	0.544	9.7	273			
106	1.02	6.77	0.545	9.9	273			
120	0.3	6.84	0.556	9.1	278			
180	0.28	6.86	0.548	9.6	271			
240	0.2	6.8	0.55	9.6	275			
300	0.08	6.31	0.533	10	267			
360	0.09	6.31	0.533	9.8	267			
Notes:		Flow rate measured with bucket and stopwatch (90 I/min)						

Follow up Sample	TW5						
Date:				April 18, 2023			
Time Elapsed	Turbidity	рН	Conductivity	Temperature	TDS	Free Chlorine	
(min)	(NTU)		(ms/cm)	(°C)	(g/L)	(mg/L)	
4	86.9	7.74	0.403	7.05	0.262		
13	40.5	7.52	0.429	7.8	0.251		
26	19.2	7.39	0.523	7.82	0.335		
38	15.5	7.39	0.524	7.79	0.336		
49	13.5	7.4	0.524	7.79	0.335		
57	12.3	7.41	0.524	7.8	0.335		
67	36.6	7.32	0.589	7.36	0.337		
77	6.9	7.35	0.59	7.38	0.378		
90	2.3	7.34	0.591	7.36	0.378		
103	0.9	7.35	0.581	7.38	0.373	0.02	
Notes:		Flow ra	ate measured w	rith bucket and s	topwatch (20 l/min)		
Follow Up Sample				TW5			
Date:				May 29, 2023			
Time Elapsed	Turbidity	рН	Conductivity	Temperature	TDS	Free Chlorine	
(min)	(NTU)		(ms/cm)	(°C)	(ppm)	(mg/L)	
29	1.31	7.19	0.452	9.7	223		
58	0.81	7.12	0.472	9.6	236		
87	0.75	7.23	0.404	9.3	203	<0.02	
Notes:	Flow rate measured with bucket and stopwatch (16 l/min)						

Follow up Sample		TW5							
Date:		March 7, 2024							
Time Elapsed	Turbidity	Turbidity pH Conductivity Temperature TDS Free Chlor							
(min)	(NTU)		(ms/cm)	(°C)	(g/L)	(mg/L)			
3	58.3	8.11	0.654	8.3	0.418				
26	24	6.68	0.647	8.73	0.414				
35	1.6	6.75	0.646	8.78	0.413				
51	1.0	6.91	0.645	8.72	0.414				
65	0.8	6.95	0.645	8.68	0.412				
84	1.1	6.87	0.643	8.81	0.412				
100	1.0	6.95	0.643	8.83	0.411				
110	0.9	6.85	0.642	8.84	0.411	< 0.02			
Notes:		Flow rate measured with bucket and stopwatch (18 I/min)							

Follow Up Sample	TW5							
Date:	May 29, 2023							
Time Elapsed	Turbidity	рН	Conductivity	Temperature	TDS	Free Chlorine		
(min)	(NTU)		(ms/cm)	(°C)	(ppm)	(mg/L)		
540	0.5	7.81	0.648	8.99	0.414	< 0.02		
Notes:	Flow rate measured with bucket and stopwatch (90 I/min)							

Private Well			9!	578 Highway 15				
Date:	April 18, 2023							
Time Elapsed	Turbidity	рН	Conductivity	Temperature	TDS	Free Chlorine		
(min)	(NTU)		(ms/cm)	(°C)	(g/L)	(mg/L)		
5	0	7.13	1.27	9.21	0.813			
7	0	7.19	1.27	9.14	0.814			
15	0	7.16	1.28	9.1	0.817	0.01		
Notes:		Sampled from untreated kitchen tap.						

Private Well		9578 Highway 15							
Date:	February 1, 2024								
Time Elapsed	Turbidity	Turbidity pH Conductivity Temperature TDS Free Chlorine							
(min)	(NTU)		(ms/cm)	(°C)	(g/L)	(mg/L)			
11	0.9	7.11	3.19	10	2.04	0.04			
Notes:	Sampled from untreated kitchen tap.								

Private Well		220 Perth Road							
Date:	April 18, 2023								
Time Elapsed	Turbidity	рН	Conductivity	Temperature	TDS	Free Chlorine			
(min)	(NTU)		(ms/cm)	(°C)	(g/L)	(mg/L)			
0.5	0	7.9	0.352	8.3	0.229				
5	0	7.83	0.345	8.03	0.224				
11	0	7.7	0.219	8.45	0.194	<0.02			
Notes:	Sampled from untreated outdoor tap.								

Private Well		9477 Highway 15							
Date:		April 18, 2023							
Time Elapsed	Turbidity	рН	Conductivity	Temperature	TDS	Free Chlorine			
(min)	(NTU)		(ms/cm)	(°C)	(g/L)	(mg/L)			
2	0.2	7.24	1.45	8.89	0.926				
10	0	7.52	1.42	8.69	0.908	0.01			
Notes:		Sampled from untreated kitchen tap.							

Private Well			9.	493 Highway 15				
Date:	April 18, 2023							
Time Elapsed	Turbidity	рН	Conductivity	Temperature	TDS	Free Chlorine		
(min)	(NTU)		(ms/cm)	(°C)	(g/L)	(mg/L)		
2	0.2	7.77	1.22	7.85	0.751			
10	0	7.79	1.24	7.77	0.796	0		
Notes:		Sampled from untreated outdoor tap.						

Private Well			1	98 Perth Road				
Date:	March 7, 2024							
Time Elapsed	Turbidity	рН	Conductivity	Temperature	TDS	Free Chlorine		
(min)	(NTU)		(ms/cm)	(°C)	(g/L)	(mg/L)		
10	1.7	8.01	0.6	11.71	0.384	0.02		
Notes:		Sampled from pressure tank (untreated).						

Private Well	216 Church St.						
Date:	March 7, 2024						
Time Elapsed	Turbidity	рН	Conductivity	Temperature	TDS	Free Chlorine	
(min)	(NTU)		(ms/cm)	(°C)	(g/L)	(mg/L)	
10	2	7.36	1.34	9.39	0.853	0.04	
Notes:	Sampled from pressure tank (untreated).						

NOTES:

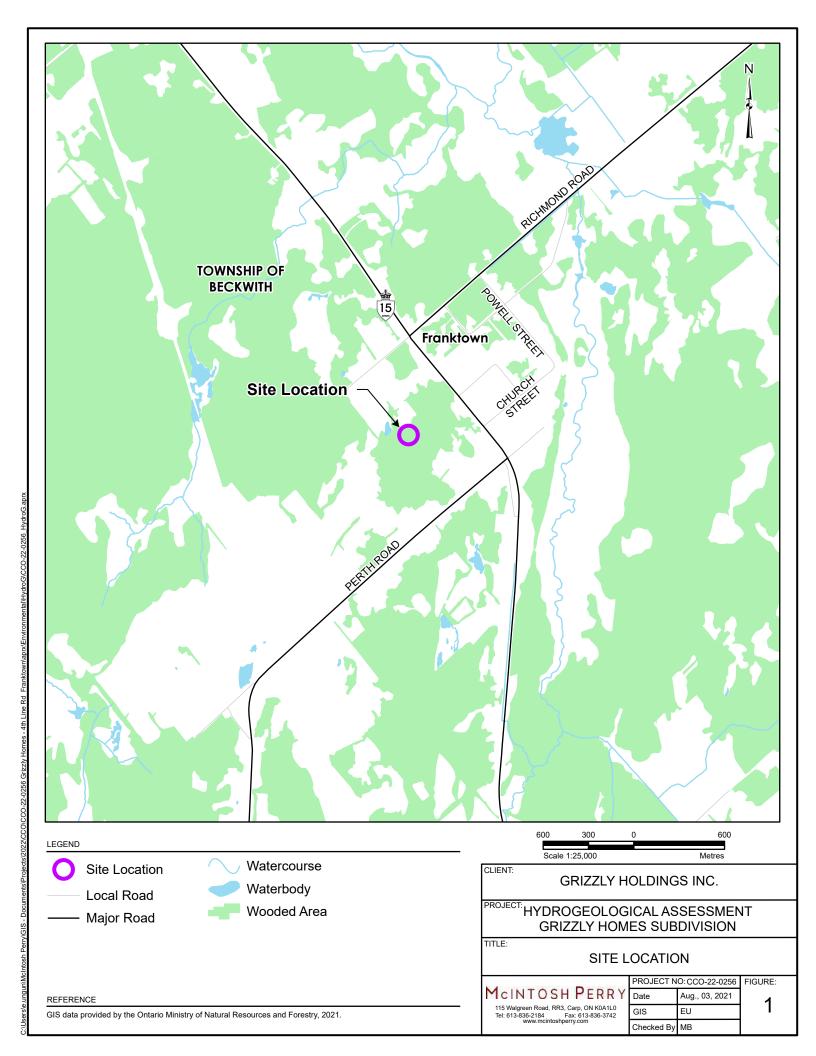
min Minutes

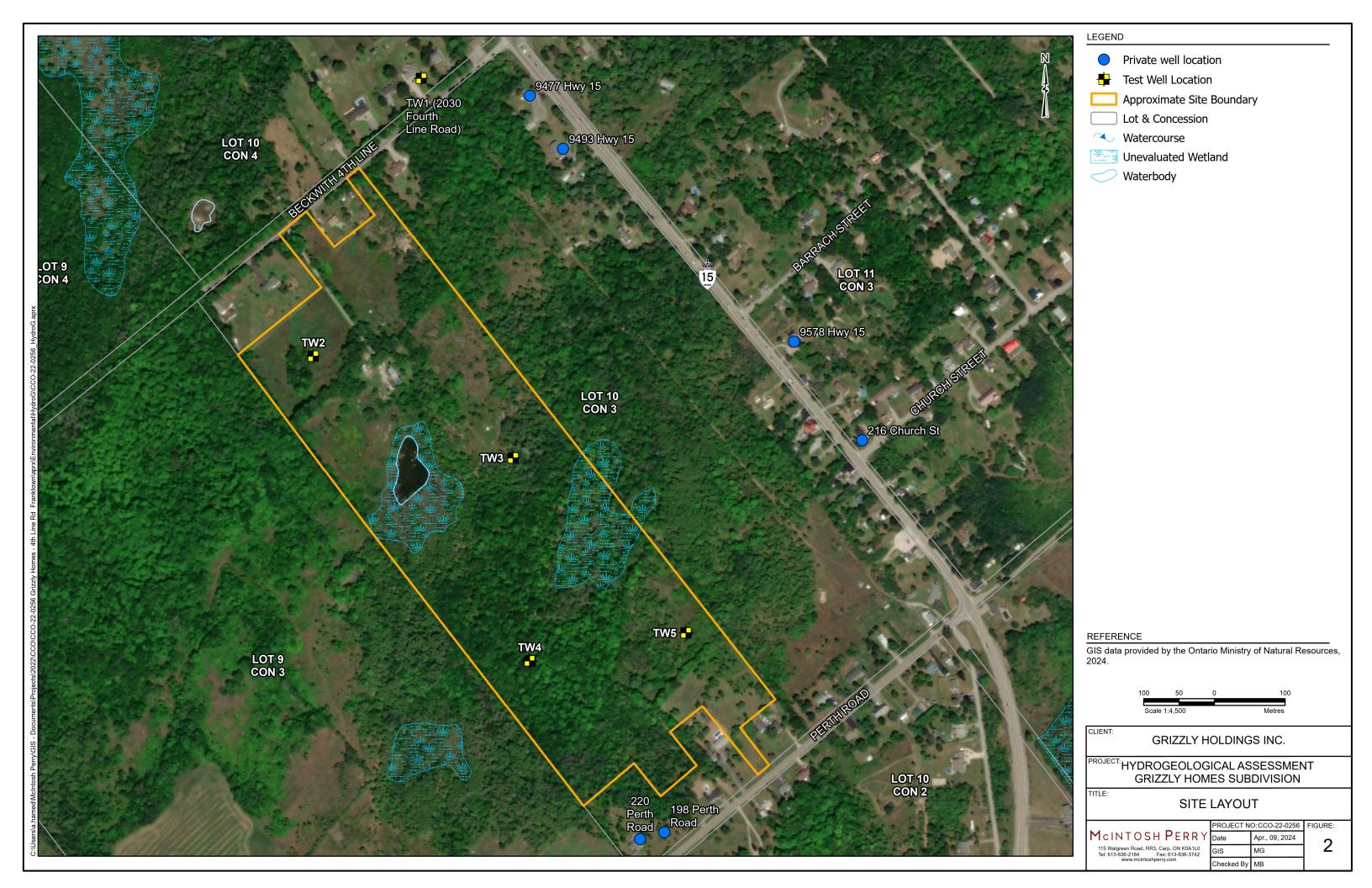
NTU Nephelometric Turbidity Units (ms/cm) Millisiemens per centimeter (us/cm) Microsiemens per centimeter

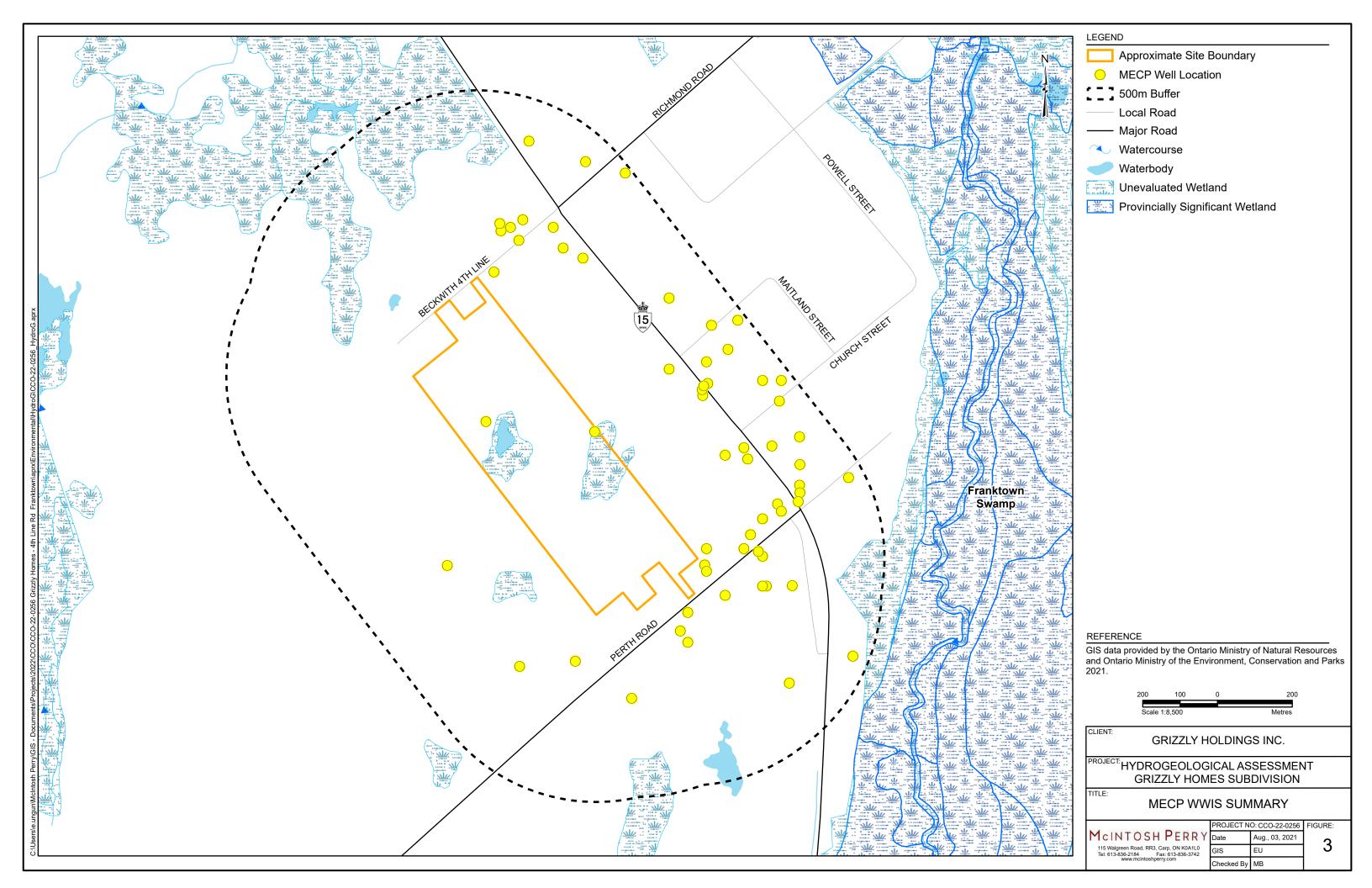
(°C) Degrees celsius g/L Grams per litre ppm Parts per million N/A Not Analyzed

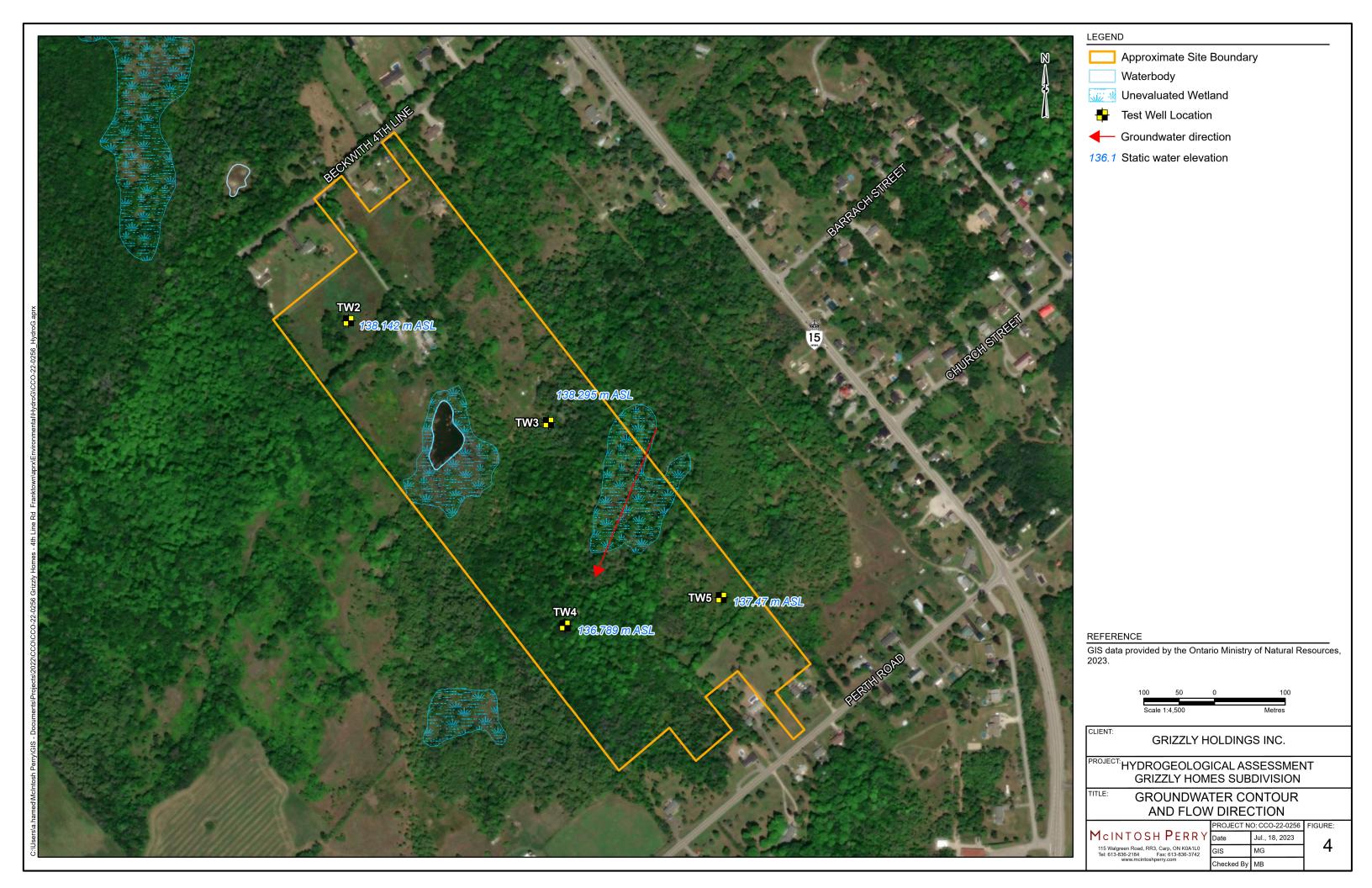
Location	1					Test Well 1			Test	Well 2				Test Wel	113				Test Wel	14					est Well 5				1 1			Private Wells			
Sample ID	Units	MDL	ODWSOG	Limit Typ	TW1-1	TW1-2	TW1	TW2-1	TW2-2	TW2	TW2	TW3-1	TW3-2	1	TW3	TW3	TW4-1	TW4-2		TW4		TW5-1	TW5-2			TW5			220 Perth Road	198 Perth	9477 Hwy 15	9493 Hwy 15	16 Church St.	9578 Hi	wy 15
Sample Date					18-	Jan-22	18-Apr-23	13-J	ul-21	18-Apr-23	01-Feb-24	14-Ju	il-21	18-Apr-23	29-May-23	01-Feb-24	09-Se	p-21	19-Apr-23	29-May-23	07-Mar-24	15-Ji	ul-21 19-Apr-	3 29-May-23	07-Mar-24	21-Mar-24	21-Mar-24*	08-Apr-24	19-Apr-23	07-Mar-24	19-Apr-23	19-Apr-23	07-Mar-24	19-Apr-23	01-Feb-24
Microbiological Parameters E. Coli Fecal Coliforms	MPN/100 mL	1	0	MAC	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1) ND (1	ND (1)	ND (1)	ND (1)	0	0	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)
Fecal Coliforms Total Coliforms	CFLI/100 mL MPN/100 mL	1	0	- MAC	ND (1)	ND (1)	ND(1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1)	ND(1)	ND (1)	ND (1)	ND (1)	ND (1)	ND (1) ND (1 ND (1) ND (1 ND (1)	ND (1)	ND (1)	ND (1)		0	ND (1)		ND (1)	ND (1) ND (1)	ND (1) ND (1)	ND (1) ND (1) ND (1)	ND (1)
Heterotrophic Plate Count	CFU/mL	10			170		HD(I)	ND (10)		1412 (1)	ND(1)	ND (10)	ND (10)	140 (1)	140(1)	140(1)	140(1)	140 (1)	140(1)	140 (1)	140(1)	ND(I)	10(1)	140(1)		ND (10)	<u>-</u>	0				140 (1)	160 (1)		ND (1)
General Inorganics	COME	10	_		170	,,,	1 -	HD (10)	NED (10)			165 (10)	ND (10)									<u> </u>							النا						
Alkalinity, total Ammonia as N	mg/L mg/L	5 0.01	500	OG	254	252	0.02	272	269 0.06	ND (0.01)	ND (0.01)	279	280 0.05	MD (0.01)	ND (0.01)	- NO (0.01)	269	272 0.01	0.01	0.01	ND (0.01)	264 0.04	264 - 0.04 ND (0.0	- ND (0.01)	- ND (0.03)	244 0.03			ND (0.01)	217 ND (0.01)	ND (0.01)	ND (0.01)	342 0.04	ND (S AT)	296
Dissolved Organic Carbon	mg/L TCU	0.5	5	AD	0.04 2.3	0.05 2.3	0.02	2	1.8	- NED (0.01)	ND (0.01)	0.9 ND (2)		- 140 (0.01)	ND (0.01)	ND(0.01)	1.3 ND (2)	0.9	0.01	- 0.01	140 (0.01)	2.5	1.7 -	· ND(0.01)	ND (0.01)	1.2		<u>-</u>	-	1.4	- 1	-	3.2	ND (0.01)	4.1
Colour Conductivity	TCU mS/cm	0.005	5	AD	0.546	16		0.62	0.614	<u> </u>		ND (2) 0.668	ND (2)				0.621	0.643				0.662	0.667 -			ND (2) 0.643	<u>:</u>			0.594			5 1.31		6 2.9
Hardness	mg/L		80-100 6.5-8.5	OG	255	256 7.5	-		293 7.7		-	282	283		-		286 7.7	292	· ·			7.6	77 .				-			197	· ·				7.5 ND (0.001)
Phenolics Phenolics	pH Units mg/L	0.001	6.5-8.5	- -	ND (0.001)	ND (0.001	1	ND (0.001)	ND (0.001)			ND (0.001)	ND (0.001)									ND (0.001)	ND (0.001)			8.1 ND (0.001)			- -	7.4 ND (0.001)			7.2 ND (0.001)	\leftarrow	7.5 ND (0.001)
Total Dissolved Solids Sulphide	mg/L	10	500 0.05	AD AD	288 ND (0.02)	300 ND (0.02)		332 ND (0.02)				334 MD (0.02)	356 MD (0.02)				298 ND (0.02)	340 MD (0.02)				346 ND (0.02)	338 -			320 ND (0.02)				286 ND (0.02)			704 ND (0.02)		1,540 ND (0.02)
Typolo 8 Haple	mg/L mg/L	0.02			ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	ND (0.1)	01	ND (0.02) ND (0.1)	ND (0.1)	0.2	0.2		ND (0.02) ND (0.1)	ND (0.1)		0.1	0.1	ND (0.1)	ND (0.02) - ND (0.1) -		ND (0.1)	ND (0.1)	-		ND (0.1)	ND (0.1)	ND (0.1)		ND (0.1)	- 1	ND (0.1)
Total Kjeldahl Nitrogen Organic Nitrogen		0.1	0.15	OG .	0.1 0.06 7.4	ND (0.1) 0.05 5.7	0.08	ND (0.1) ND (0.1) 0.05 12.5	0.04	0.09	0.09	0.1	ND (0.1)	0.19	0.225	0.2	ND (0.1) 0.09	0.09	0.09	0.136	0.09	0.06	0.06 0.09) ND (0.1) ND (0.100)	ND (0.100)	0.2 0.17 0.2			0.09	0.1		0.09	0.3 0.26 0.2	0.09	0.3
Turbidity Anions	NTU	0.1	5	AD	7.4	5.7	-	12.5	1.2		-	30.2	6.3		-	-	17	0.8	-	-	•	1.6	0.3 -			0.2	-	-	-	0.4	-	-	0.2		0.1
Chloride	mg/L	0.1	250		13	12	-	21	20			27 ND (0.1)	28	-			30 ND (0.1)	26				39 ND (0.1)	39 -			50 ND (0.1)				52 ND (0.1)			196 ND (0.1)		774
Nitrate as N	mg/L	0.1	10	MAC	0.3 ND (0.1)	0.3 ND (0.1)	ND (0.1)	0.2	20 0.2 0.5	0.5	0.4	2.5	2.4	2.8	2.7	13	1.3	1.6	0.1	ND (0.1) ND (0.05)	ND (0.1)	0.9	0.8 1	0.4	0.9	0.9			0.4	0.5		1.1	2.8	1.2	0.1 1.7
Nitrite as N	mg/L	0.05		MAC	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05) 17		ND (0.05)	ND (0.05)	ND (0.05) 15	ND (0.05)		ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)	ND (0.05)		ND (0.05) ND (0.0	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	ND (0.05)	ND (0.05) ND (0.5)			ND (0.05)	ND (0.05)	120 (0.00)	ND (0.05)	ND (0.05) 47	ND (0.05)	ND (0.05) ND (0.5) 39
Sulphate Phosphorus, total	mg/L mg/L	0.01	1 -	-			ND (0.01)			ND (0.01)	ND (0.01)			0.02	ND (0.01)	ND (0.01)			ND (0.01)	ND (0.01)	ND (0.01)		- ND (0.0	ND (0.01)	<u> </u>	ND (0.5) 13			ND (0.01)	ND (0.5)	ND (0.01)	ND (0.01)		ND (0.01)	39
Phosphate as P Metals	mg/L	0.5	-	_	<u> </u>	<u> </u>		<u> </u>								<u> </u>							<u> </u>		<u> </u>		<u></u>						nD (U.5)		
Mercury Aluminum	ug/L ug/L	0.1	0.001 mg/L (1 ug/L) 0.1 mg/L (100 ug/L) 0.006 mg/L (6 ug/L)	MAC																						ND (0.1) 2 ND (0.5)				40.1 3 40.5			<0.1 3 <0.5		ND (0.1)
Antimony	ug/L	0.5	0.006 mg/L (6 ug/L)	MAC	+	1	<u> </u>	<u> </u>	+==													L				ND (0.5)				40.5			<0.5	二十	1 ND (0.5)
Arsenic Barium	ug/L ug/L		0.01 mg/L (10 ug/L)	MAC	+	+	<u> </u>		-						-		-					<u> </u>		+		ND (1) 307	-		+ ÷	<1 127	-		<1 234		ND (1) 394
Beryllium Boron Cadmium	ug/L ug/L						-		-																	ND (0.5)			I	<0.5			<0.5 38	_	ND (0.5)
Cadmium	ug/L	0.1	5 mg/L (5000 ug/L) 0.005 mg/L (5 ug/L)	MAC	1	1	1		+ :													<u> </u>				13 ND (0.1)			1	13 40.1			38 <0.1		21 ND (0.1)
Calcium Chromium	ug/L ug/L	100	0.005 mg/L (5 ug/L) 0.05 mg/L (50 ug/L)	MAC	71,000	70,800		80,000	80,300	<u>:</u>		75,700	75,500				79,500	81,300			<u>:</u>	64,500	63,900 -	-		65,800 ND (1)	<u>:</u>			51,300 <1			98,200 <1	-+	115,000 ND (1)
Cobalt Copper	ug/L	0.5																								ND (0.5)	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		40.5			40.05		ND (0.5) 77.4
Iron		0.5 100	300	AD	900	900		300	ND (100)			400	100				ND (100)	ND (100)				ND (100)	ND (100)			ND (100)			- :	75.5 ND (100)			52.8 ND (100)		ND (100)
Lead Magnesium	ug/L ug/L	0.1	0.01 mg/L (10 ug/L)	MAC	18.900	19.300	-	22,600	22.400			22,700	22,900				21,200	21,700				19,700	19,900 -	+		0.1 20,100				0.4 16,800		-	4.7 29,900	7	ND (0.1) 28,800
Manganese	mg/L	5	0.05 mg/L (50 ug/L)	AD	78	78	-	53	59			26	10		-		8	ND (5)	· ·			ND (5)	ND (5) -			ND (5)				7	· ·	-	22	_	10 ND (0.5)
Molybdenum Nickel		0.5							-																	0.6 ND (1) 2,870			-	3 1,300			<0.5 3		1
Potassium Selenium	ug/L ug/L	100	0.05 mg/L (50 ug/L)	MAC	2,500	2,500	 	3,000	2,700			4,200	3,600				3,500	3,400				1,370	1,400 -			ND (1)	-	-	-	1,300 <1			5,460 1 <0.1		2300 ND (1)
Silver	ug/L	0.1	20 mg/L (20000 ug/L)	1800		5.500		0.300	8,500		· · · · · ·	13.400	13.300				22.200	19.400		· · · · · · · · · · · · · · · · · · ·			24.000			ND (0.1)							<0.1		ND (0.1)
Strontium	ug/L ug/L) NW.	5,800	3,300		7,300	- 0,500			13,400	13,300				22,200	19,400				23,000	24,000			26,200 172	-	-	- :	30,100 155			423		692
Thallium Tin		0.1					+		<u> </u>															-		0.1 ND (5)			- :	<0.1 <5			<0.1 <5 <5		ND (0.1) ND (5)
Titanium		5					<u> </u>	i	· · · · ·		i						· · · · · · · · · · · · · · · · · · ·									ND (5)				-65			<5		ND (5) ND (10)
Tungsten Uranium	ug/L ug/L	0.1	0.02 mg/L (20 ug/L)	MAC																						ND (10) 0.7				<10 0.8			<10 1.5		1.4
Vanadium Zinc	ug/L ug/L	0.5	5 mg/L (5000 ug/L)	ÄÖ			+		<u> </u>															-		ND (0.5)			- :	40.5 95			<0.5 58		ND (0.5)
Volatile Organic Compounds (VOCs)		-			1		1			ND (5.0)													L sup in											=	
Benzene	ug/L ug/L	0.5	0.001 mg/L (1 ug/L)	MAC						ND (0.5)													- ND (0.) .										للنب	
Bromodichloromethane Bromoform	ug/L	0.5	·							ND (0.5)				<u>-</u>									- ND (0.) .											
Bromomethane Carbon Tetrarbloride	un/l	0.5				-	-	-	-	ND (0.5) ND (0.2)					-		-						- ND (0.												
Chiorobenzene	ug/L ug/L	0.5	0.002 mg/L (2 ug/L) 0.08 mg/L (80 ug/L)	MAC						ND (0.5)													- ND (0.											للنب	
Chloroethane Chloroform	ug/L ug/L	0.5					 			ND (1.0) ND (0.5)													- ND (1.)	}					-						
Chloromethane Dibromochloromethane	ug/L	3			ļ	ļ			<u> </u>	ND (3.0) ND (0.5)												<u></u>	- ND (3)		ļ										
Dichlorodifluoromethane		0.5				1				ND (1.0)									- :			1	- ND (1:	<u> </u>							- :		- :		
Ethylene dibromide (dibromoethane, 1,2-) 1,2-Dichlorobenzene	ug/L ug/L	0.2	0.2 mg/L (200 ug/L)	MAC	+	+	++-	 -	++-	ND (0.2) ND (0.5)				<u></u>			\vdash					 	- ND (0.) .					+		- : -			_	
1,3-Dichlorobenzene 1,4-Dichlorobenzene	ug/L	0.5	_			ļ			-	ND (0.5)							<u> </u>					<u> </u>	- ND (0.						ļ					<u> </u>	
1,1-Dichloroethane	ug/L	0.5				1	1		1	ND (0.5)												<u> </u>	- ND (0.)					1 :				-:-		
1,2-Dichloroethane 1,1-Dichloroethylene	ug/L	0.5	0.005 mg/L (5 ug/L) 0.014 mg/L (14 ug/L)	MAC	+	+	+	<u></u>	+	ND (0.5) ND (0.5)													- ND (0.)					+		- : T	-÷-F			
cis-1,2-Dichloroethylene trans-1,2-Dichloroethylene	ug/L	0.5	-							ND (0.5) ND (0.5)							<u> </u>						- ND (0.) -					1						
1,2-Dichloroethylene, total	ug/L	0.5								ND (0.5)									- :				- ND (0.) -							- :		- :		
1,2-Dichloropropane cis-1,3-Dichloropropylene	ug/L	0.5		+	+	+	+	<u></u>	+	ND (0.5) ND (0.5)													- ND (0.	1 .			-		+		- : T	- : F			
trans-1,3-Dichloropropylene 1,3-Dichloropropene, total	ug/L	0.5			<u> </u>				-	ND (0.5) ND (0.5)												<u> </u>	- ND (0.		-				- ·						
1,3-Dichioropropene, total Ethylbenzene	ug/L	0.5 0.5	0.14 mg/L (140 ug/L)	MAC	<u> </u>	<u> </u>	<u> </u>		1	ND (0.5)			:									<u> </u>	- ND (0.) -							- :				
Hexane Methyl Ethyl Ketone (2-Butanone)	ug/L ug/L			+	+	+	 		+	ND (1.0) ND (5.0)													- ND (1.)	}					+		:			, 	
Methyl Butyl Ketone (2-Hexanone)	ug/L	10			1					ND (10.0) ND (5.0)												<u></u>	- ND (10						-						
Methyl Isobutyl Ketone Methyl tert-butyl ether	ug/L ug/L	5 2	<u> </u>	1	1	1	1		1	ND (2.0)		- :										<u> </u>	- ND (2.)) -					1				- :		
Methylene Chloride	ug/L ug/L	5 0.5	0.05 mg/L (50 ug/L)	MAC			-		-	ND (5.0) ND (0.5)												-	- ND (5)) .	-				1						
1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane	ug/L	0.5		<u> </u>	<u></u>	ļ	<u> </u>	<u> </u>	<u> </u>	ND (0.5)												<u></u>	- ND (0.) -											
1,1,2,2-Tetrachloroethane Tetrachloroethylene	ug/L ug/L	0.5	0.01 mg/L (10 ug/L)	MAC	+=	1	1	H		ND (0.5)					1	<u> </u>							- ND (0.) -					1						
Toluene 1,1,1-Trichloroethane	ug/L ug/L	0.5	0.06 mg/L (60 ug/L)	MAC	1	1	-	-	-	ND (0.5) ND (0.5)												1	- ND (0.								- :				
1,1,2-Trichloroethane	ug/L	0.5		1	1	<u> </u>	1		1	ND (0.5)						<u> </u>						<u> </u>	- ND (0.)				<u> </u>							
Trichloroethylene Trichlorofluoromethane			0.005 mg/L (5 ug/L)							ND (0.5) ND (1.0)		-						-		-		<u> </u>	- ND (0.) -						-	-	-	-		
1,3,5-Trimethylbenzene Vinyl Chloride	ug/L ug/L	0.5	0.001 mg/L (1 ug/L)	MAC	1					ND (0.5) ND (0.5)													- ND (0.1	<u> </u>											
m/p-Xylene	ug/L	0.5	· · · · · · · · · · · · · · · · · · ·			1				ND (0.5) ND (0.5)												<u> </u>	- ND (0.	<u> </u>					1		- :		- : -	للت	
o-Xylene Xylenes, total	ug/L ug/L	0.5	0.09 mg/L (90 ug/L)	MAC	+:	+ :	-	-		ND (0.5) ND (0.5)					-	-						H:	- ND (0. - ND (0. - ND (0.) -	-	-	-	-		- 1	- T	T	- T	$ \mp$	
***					•	•																•							•						

THIS sample on March 21, 2004 collected by Red Passance P Eng.

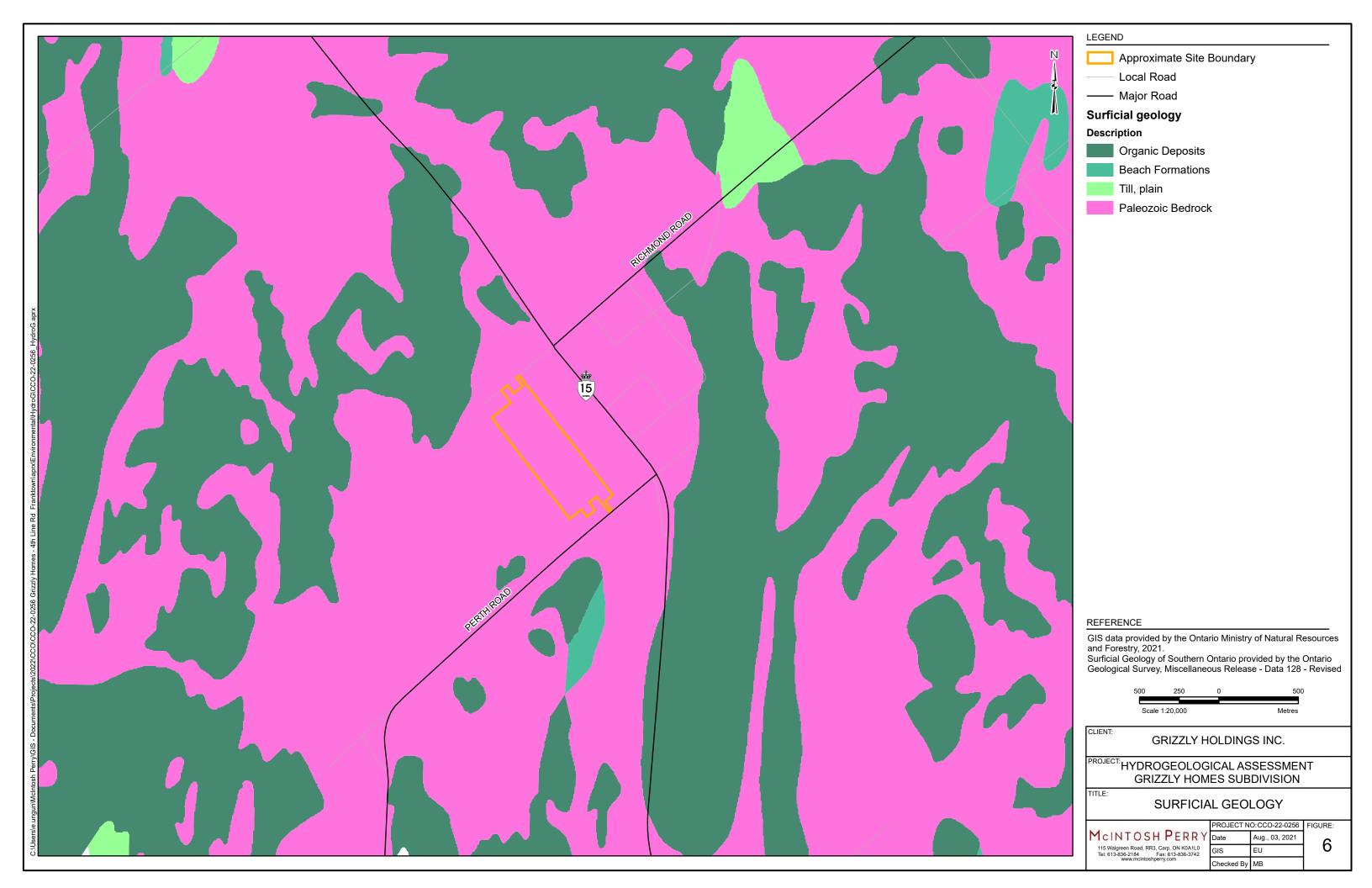

THIS sample collected by Red Passance P Eng.

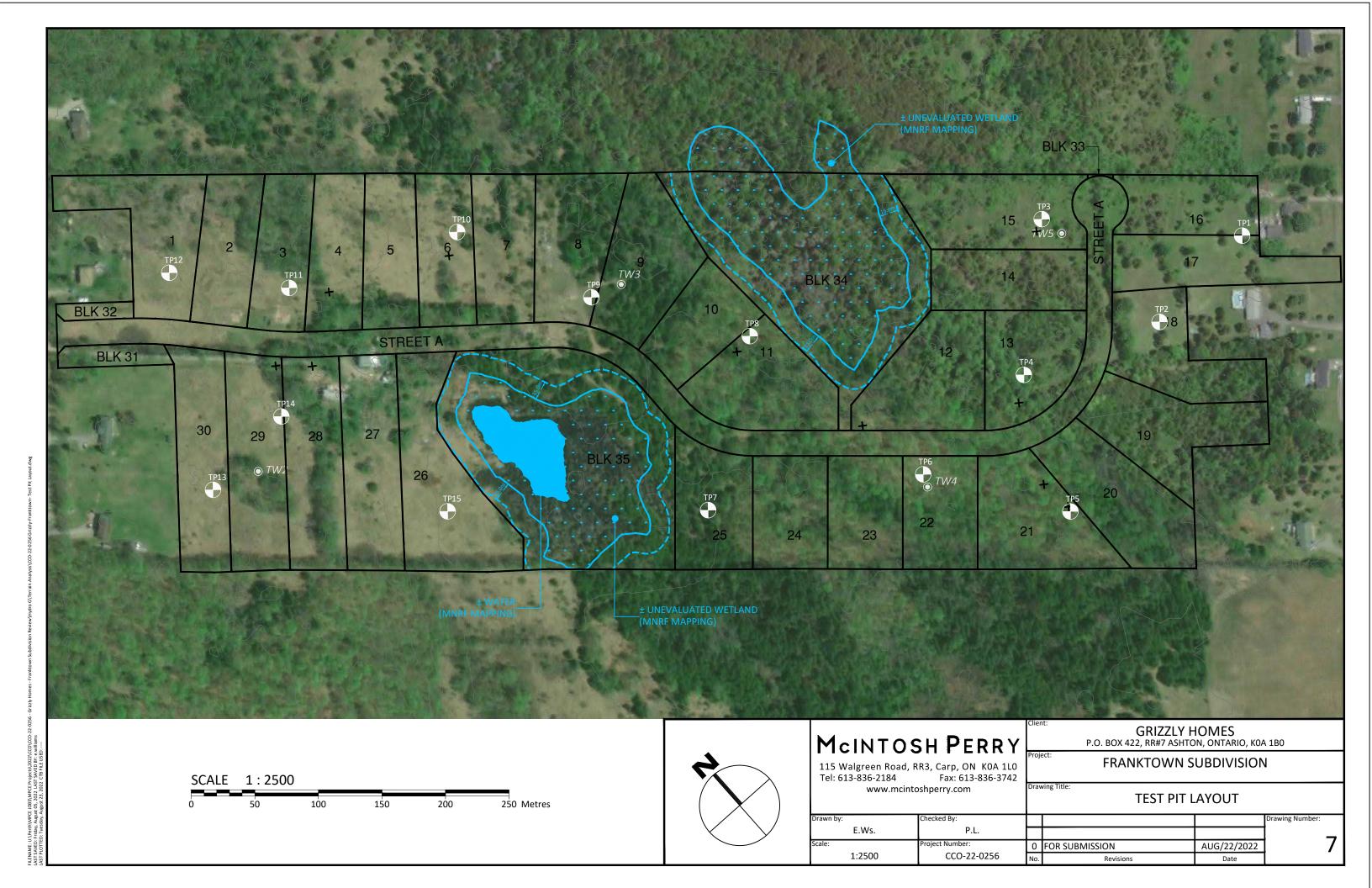

The TWO sample collected on March 21, 2004 by Red Passance P Eng.

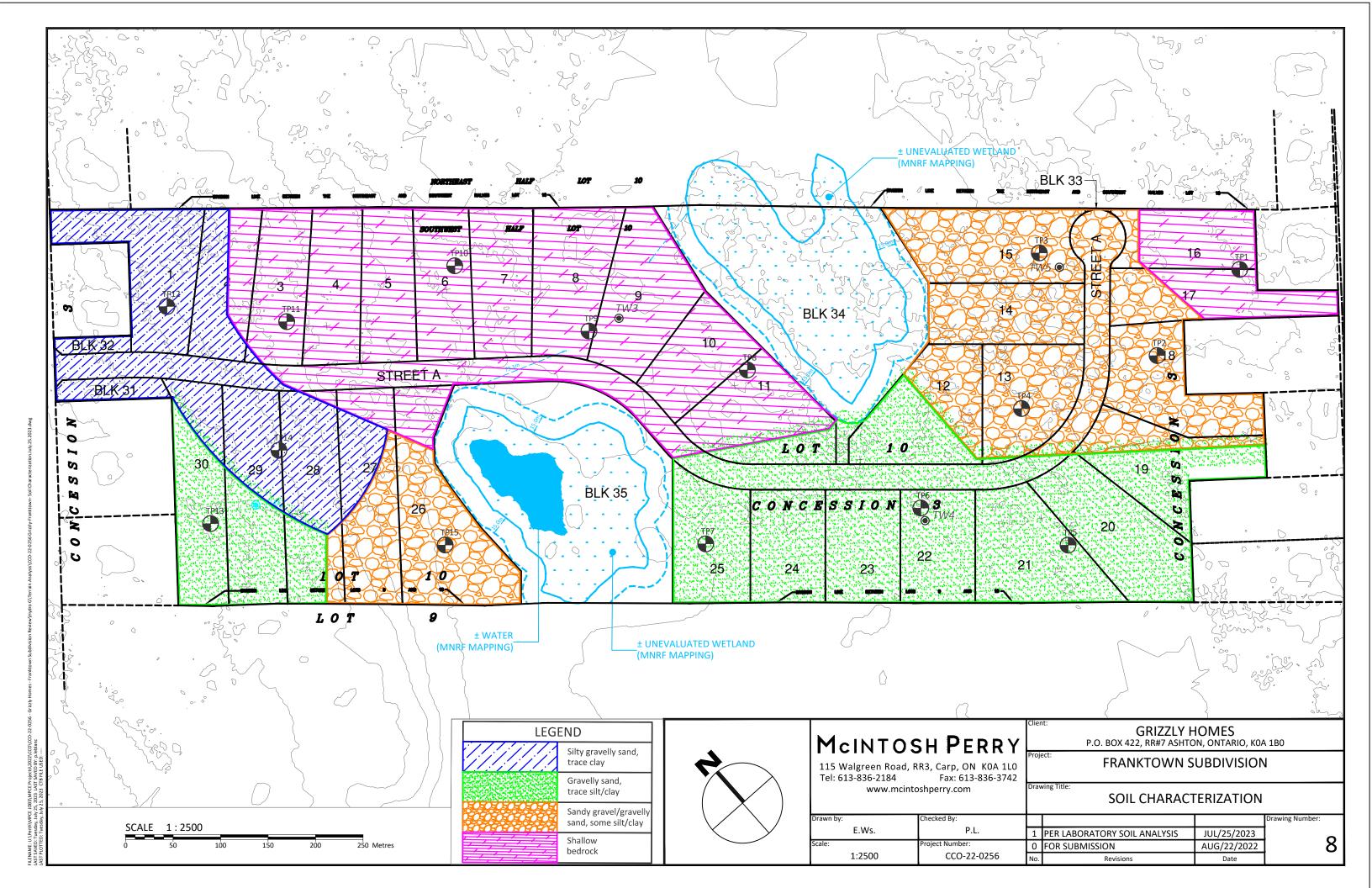

THE TWO SAMPH S

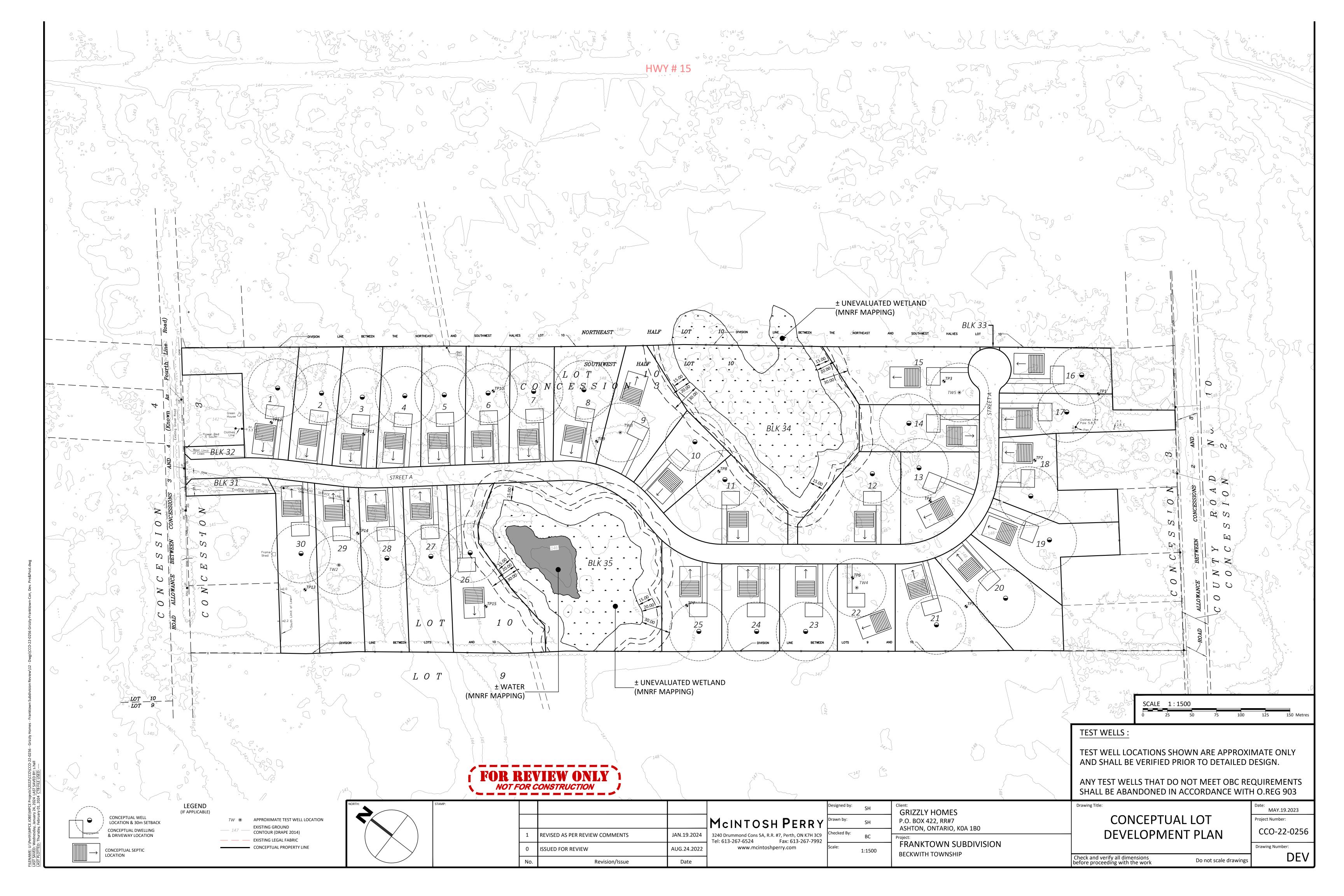


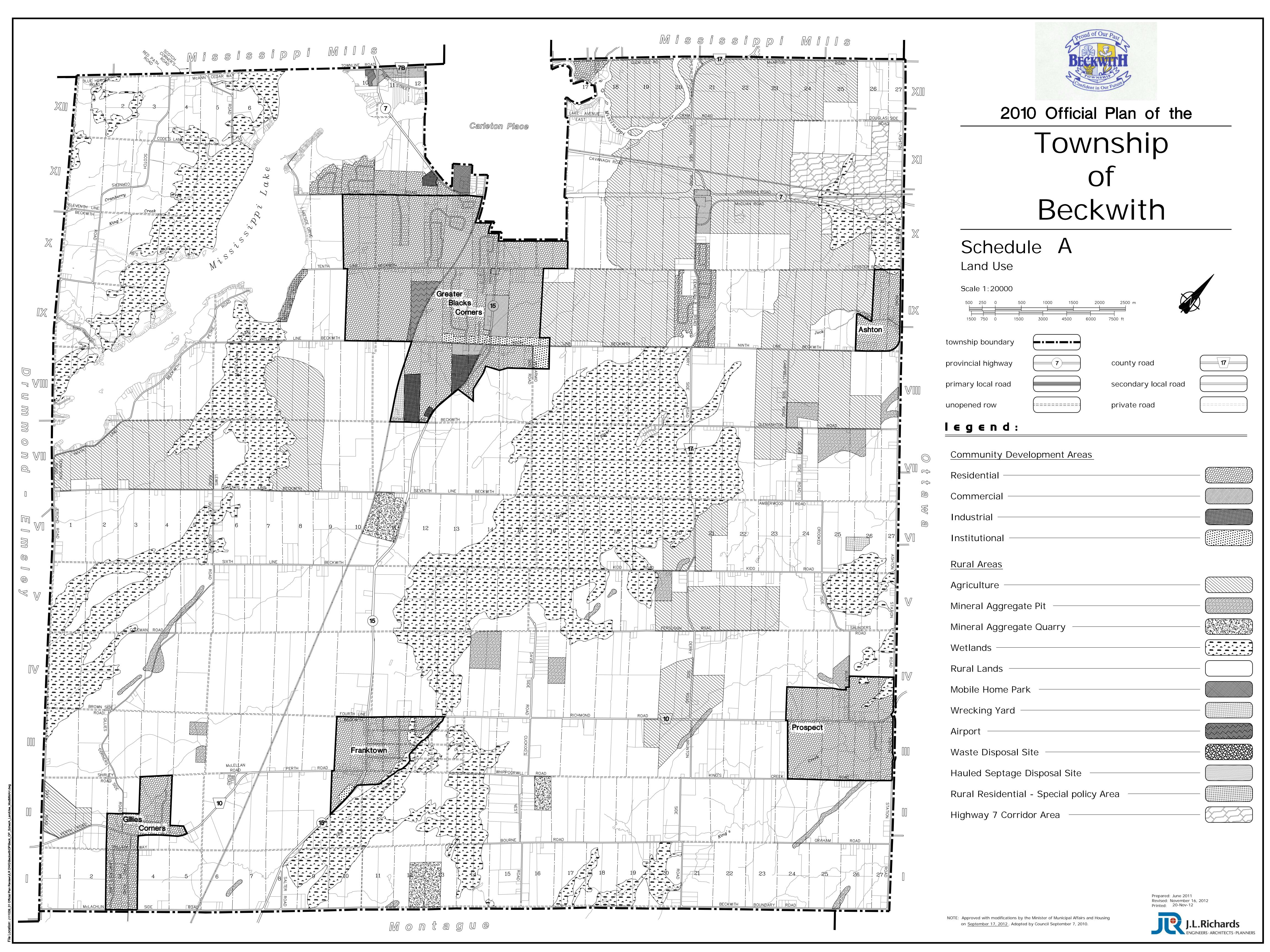

FIGURES











APPENDIX A: PRELIMINARY CONCEPT PLAN

APPENDIX B: BECKWITH TOWNSHIP OFFICIAL PLAN

APPENDIX C: ON-SITE WATER WELL RECORDS (AIR ROCK DRILLING)

CERTIFICATE OF WELL COMPLIANCE

(REQUIRED FOR OCCUPANCY INSPECTION ONLY)

I, Jeremy Hanna (License T3632) of AIR ROCK DRILLING CO. LTD do hereby certify that I am
Licensed to drill wells in the Province of Ontario and that I have supervised the drilling of a well on the
PROPERTY OF GRIZZLY HOMES (Name of Landowner)
(Name of Landowner) LOCATED AT # 2085 47H Line Beckwith, Franktown (Civic Address)
LOT # 10 CON # 3 PER TEST WELL 2 S/L # 29
IN the TOWNSHIP OF BECKWITH - IN the COUNTY OF LANARK
AND FURTHER THAT I am aware of the well drilling requirements of the Township of Beckwith and
the guidelines, recommendations and regulations of the Ministry of the Environment as they govern
well installation in the Province of Ontario.
AND DO HEREBY CERTIFY THAT the said well has been drilled, cased and cement grouted to the
standards required. Signed this day of 1 ULT 20_2[
Air Rock Drilling Co. Ltd. (C-7681) Jeremy Hanna
Witness Debbie Davis
Witness Debbie Davis 29Jul2021 JORDAN D. BOWMAN PRACTISING MEMBER 3315
ONTARIO .

HYDROLOGIST (Signature / Stamp)

Ontario 😵	Ministry of the Environme Conservation and Parks	well Tag#:	A320952	Below)	Well	Record
Measurements recorde	ed in: Metric Imperi	A 3	20952) regular	Page	of
Well Owner's Infor	mation					
First Name	Last Name Organiz	12214 A	SME 5	il Address		ell Constructed Well Owner
Mailing Address (Street I	Number/Name	Municipality	=h-	Postal Co	A . O .	inc. area code)
Well Location	d. FFT		SINOW !	Old He	MINDO II	
Address of Well Location	(Street Number/Name) Be	Chin-Hownship	30-0, 457	Lot Ic	Concession	
County/District/Municipal		City/Town/Vil	age lado			stal Code
UTM Coordinates Zone	Easting Northing	Municipal Pla	n and Sublot Number	73/	Other	
NAD 8 3 12	415703 490 ock Materials/Abandonmen	8086 7	W# 2	* * * * * * * * * * * * * * * * * * *	1 5 Ca	1
General Colour	Most Common Material	Other Materials	Journa of the Back of this	General Descripti	on E	Depth (m
	56	nd			0	11
	grey him	8 dere				30'
	prey Sound	store			30	1 100'
						_
						-
V	TW#2	51298	E			
4	1					
Depth Set at (m/ti)	Annular Space Type of Sealant Us	AND ADDRESS OF A COURT OF THE PARTY OF THE P	Placed After test of	Results of I f well yield, water was:	Well Yield Testing Draw Down	Recovery
From To	(Material and Type		Clear	and sand free	Time Water Level Tim (min) (m/ft) (mir	
32, 20	hest conent	5147 10.	If pumping	discortinued, give reason	n: Static Level 156"	33,8"
20 0.	serosmye si	mid to		\sim	1 22,5 1	27.6
			Pump intak	ce set at (noth)	2 25,3 2	23.2
Method of Cons	truction	Well Use	Pumping ra	ate (Vmin /GPM)	3 27. 3	20.5
Cable Tool Rotary (Conventional)	☐ Diamond ☐ Public ☐ Jetting ☐ Domestic		Not used Duration of		4 28 3 4	17.9
	☐ Driving ☐ Livestock ☐ Digging ☐ Irrigation	☐ Test Hole ☐☐ ☐ Cooling & Air Condition	Workbring	min level end of pumping (mg	5 29.2 5	15.6
Air percussion Other, specify	☐ Industrial ☐ Other, spec		33	3(811	15 32 5 15	100
Const	truction Record - Casing	Status		ve rate (I/min/GPM)	20 23 1 20	1
Inside Open Hole O Diameter (Galvanized, F (cmm) Concrete, Pla	Fibreglass, Thickness	Pepth (mf) Water Su Replace	ment Well	nded pump depth (m	25 33 2 25	
CIAU ST	l .188" +2	Test Hole		aded pump rate	30 33 4 30	
LI OPEN	Hice 42	Dewateri	ng Well	Ction (VminGPM)	40 33,6 40	
0 000	100	☐ Alteration	ig Hole	00	50 33.7 50	
		(Constru	ed, Yes	□ No	60 \$3.8" 60	A
Outoido	ruction Record - Screen	epth (m/ft) Abandon Water Qu		The state of the s	Well Location ving instructions on the ba	(A)
Diameter (cm/in) Mater (Plastic, Galvar		□ Abandon		i-1	0 1 .10	5
		Other, sp		fitt Line	_pearwij	
		Other, sp		SKIN		_
No. of the Control of	Water Details	Hole Diamete	Diameter Diameter	~	#2089 474 Lin	5
94 (m/ff) Gas 🗆	Other, specify	From To	(cm/ G)	250FT	4TH Lin	e
Water found at Depth Kin (m/ft) ☐ Gas ☐	od of Water: Fresh Untes	ted 0 12'	174"		Reduit	HE
Water found at Depth Kin	d of Water: Fresh Untes		6"		TWIN)
Well	Contractor and Well Techni		VI.	\	1 00 . 05	101
Business Name of Well Co	APULLING Call	Well Contractor's L		Porta	Road	10
Business Address (Street N	Number/Name)	0 Municipality	Comments:	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1.0100	- C-
Province Posta	Il Code Business E-mail		suer 1/24	H-109t	Mooke 8	DAS
Bus Telephone No. (inc. area	ADZO a code) Name of Well Technicia	n (Last Name First Name)	Well owner's information	2 2127	Audit No ZOF	e Only
a13838	2170 HAN	NA Splemu	package delivered	Date Work Completed	1000 -30	STUU
Well Technician's Licence No.	Signature of Technician and/or	Contractor Date Submitted	Bio	2021074	Received	
0506E (2020/06) © Queen's Pr	inter for Ontario, 2020	Ministry	's Copy			-

CERTIFICATE OF WELL COMPLIANCE

(REQUIRED FOR OCCUPANCY INSPECTION ONLY)

I, Jeremy Hanna (License T3632) of AIR ROCK DRILLING CO. LTD do hereby certify that I am
Licensed to drill wells in the Province of Ontario and that I have supervised the drilling of a well on the
PROPERTY OF GRIZZLY HOMES (Name of Landowner)
LOCATED AT # 2085 47H Line Beckwith, Franktown (Civic Address)
LOT # 10 CON # 3 PEST NELL 3 S/L # 9
IN the TOWNSHIP OF BECKWITH - IN the COUNTY OF LANARK
AND FURTHER THAT I am aware of the well drilling requirements of the Township of Beckwith and
the guidelines, recommendations and regulations of the Ministry of the Environment as they govern
well installation in the Province of Ontario.
AND DO HEREBY CERTIFY THAT the said well has been drilled, cased and cement grouted to the
standards required.
Signed this 1374 day of 1 UL7 2021
Air Rock Drilling Co. Ltd. (C-7681) Jeremy Hanna Witness Debbie Davis Debbie Davis
HYDROLOGIST (Signature / Stamp) A320954

Ontario Ministry of the Environment, Conservation and Parks	Well Taç Tag#:A32		Well Record
Measurements recorded in:	A3209	754	Page of
Well Owner's Information		I a di Addina	
First Name Last Name/Organization	LY HOMES	E-mail Address	Well Constructed by Well Owner
Mailing Address (Street Number/Name)	Municipality	Province Postal Code	Telephone No. (inc. area code)
Well Location		CI GATIFER	
Address of Well Location (Street Number/Name)	with Be	counte 10	Concession
County/District/Municipality LANAPK	City/Town/Village	alta in	Province Postal Code Ontario
UTM Coordinates Zone Easting Northing	Municipal Plan and Sublo	ot Number	Other 1
NAD 8 3 84 15 784 4 70 70 70 70 70 70 70	Ing Record (see instructions on the	e back of this form)	O(L)
General Colour Most Common Material	Other Materials	General Description	Depth (m/ft) From 10
dana			0' 65"
Grey winests	10		3-(10-
alled sources			30 100
1/- 1/1/2	1, a r		
- X W 3 - D	LTA		
Annular Space		Results of W	ell Yield Testing
Depth Set at (note) Type of Sealant Used (Material and Type)	Volume Placed (m³/ft³)	After test of well yield, water was: Clear and sand free	Draw Down Recovery Time Water Level Time Water Level
42'32' Next Cowent &	Jury 10.92	Other, specify	(min) (m/ft) (min) (m/ft) Static 31'5 '4 33'4'
32' o' Bertanie Stur	4-20.	If pumping discontinued, give reason:	1 2 3 1 21'6"
	J	Pump intake set at (m/4)	2 20 5 221/5"
		Pumping rate (l/min/ GPM)	3 22.6 3
Method of Construction ☐ Cable Tool ☐ Diamond ☐ Public ☐	Well Use ☐ Commercial ☐ Not used	20	432-7 4
Rotary (Conventional) Jetting Comestic Conventional Driving Vestock		Duration of pumping hrs + min	5 32,8 5
Air percussion Industrial	Cooling & Air Conditioning	Final water level end of pumping (m/ft)	1032.9 10
Other, specify Other, specify Other, specify Construction Record - Casing	Status of Well	If flowing give rate (I/min/GPM)	15 33. 15
Inside Open Hole OR Material Wall Depth (r	m/ft) Vater Supply	Recommended pump depth (10/11)	20 33. 20
(cm/in) Concrete, Plastic, Steel) (cm/in) From	To Replacement Well Test Hole	Recommended pump rate	25 33 2 2 5 3 3 3 3 3
6/4" 3/60 .188" +2"	Recharge Well Dewatering Well	(I/min(GPM) 2	40 83 3 40
5" Ille" Opentitio 42"	Observation and/or Monitoring Hole	Well production (Vmin(ePM)	50 33 3 50
	(Construction)	Disinfected?	60 33 4 60
Construction Record - Screen	Insufficient Supply		ell Location
Outside Diameter (cm/in) (Plastic, Galvanized, Steel) Slot No. From	Abandoned, other,	Please provide a map below following	
(array)	specify	47H Line	beckwith
	Other, specify		1
Water Defails Water found at Depth Kind of Water: Fresh Intested	Hole Diameter Depth (n Diameter	\$2085	2KM
90 (mtt) Gas Other, specify	Depth (n(D) Diameter (cm(D)	4TH LINE	
Water found at Depth Kind of Water: Fresh Voltested (m/f) Gas Other, specify	0 40 74	Bedwith	(S
Water found at Depth Kind of Water: Fresh Untested	3' 120' 515/16	" TW#3	130 PT
(m/ft) Gas Other, specify Well Technician I	nformation		
Business Name of Well Contractor	Well Contractor's Licence No.	HO 0 -11	I pos a Hot
Business Address (Street Number/Name)	O Municipality	Comments:	2 M
Province Postal Code Business E-mail Address	SI CHMOND	1/2HP-10GPM	30/2 100 19
Bus. Telephone No. (inc. area code) Name of Well Technician (Las	t Name, First Name)	Well owner's Date Package Delivered information	A JANE
611318382170 HANNA	Jeremy	package defivered Date Work Completed	4 2364644
Well Technician's Licence No. Signature of Technician and/or Contra	actor Date Submitted /	0 - +7115	Received
0506E (2020/06) @ Queen's Printer for Ontario, 2020 /	Ministry's Copy	(VU)	and the second of the second s

CERTIFICATE OF WELL COMPLIANCE

(REQUIRED FOR OCCUPANCY INSPECTION ONLY)

I, Jeremy Hanna (License T3632) of AIR ROCK DRILLING CO. LTD do hereby certify that I am	
Licensed to drill wells in the Province of Ontario and that I have supervised the drilling of a well	on the
PROPERTY OF GRIZZLY HOMES (Name of Landowner)	
LOCATED AT # 2085 4TH LINE BECKWITH, Fram (Civic Address)	Hown
LOT# 10 CON# 3 PLAN# TW# 4 S/L# 22	
IN the TOWNSHIP OF BECKWITH - IN the COUNTY OF LANARK	
AND FURTHER THAT I am aware of the well drilling requirements of the Township of Beckwith ar	nd
the guidelines, recommendations and regulations of the Ministry of the Environment as they govern	/ern
well installation in the Province of Ontario.	
AND DO HEREBY CERTIFY THAT the said well has been drilled, cased and cement grouted to the	
standards required. Signed this 31 St day of August 2021	
Air Rock Drilling Co. Ltd. (C-7681) Jeremy	Hanna
ONAL GEOD	
Witness Debbie Davis	
23Selviz021 z o JORDAN D. BOWMAN o PRACTISING MEMBER 3315	ာ
HYDROLOGIST (Signature / Stamp) TAGA 318	561 61:00
1 WHA	15 L#00

Ontar	Conserv	of the Env	ironment, Parks	A318561	Print Below)	Regulation	1 903 Oı			Record sources Ad
					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		AND SOUNDS	owen ago	SERVET II.	
First Name	er's Information	Last Name/0	Organization		E-mail Address	ATT ATT ATT ATT	_ 1000 E000		□ \Moll	Constructed
1 hat realic			rizzly Homes							ell Owner
	ess (Street Number/Na		1	Municipality	Province	Postal Code		elephone	No. (inc.	area code)
	Box 422.RR#4	4.1 10 10 10		Ashton	On	KOA	1B0			
Well Local				I=		1				
Address of V	Vell Location (Street Nur 4th Line	mber/Name)	8.510	Township	Beckwith	Lot 10		Concession 3	1	
	ict/Municipality	-	4-0361	City/Town/Village	1.	`\	Provinc		Posta	I Code
Lan	ark				Frankton	20	Onta	rio		
	nates Zone Easting		orthing	Municipal Plan and Sub	lot Number		Other			
NAD 8			4987655	ZV	V * 4		S/L	22		
General Col		mon Materia		ecord (see instructions on t Other Materials		eral Description			Den	oth (n (ft)
General Col	oui Most Collin	Mon Wateria		Other Materials	Oene	A Description			From	6
				Sound a	STONOR	<u> </u>		-	- /	0 .
Grey			stone						6 '	25 '
White	w yellow by	er Sand	Istone Mux						25 /	98 ′
White	Wholingh	Sand	stone My						98 /	116
White,	What I am	Sanc	Istone Mix						116	122.
	phenon ica									
	*	-W4	+4-81	122 *						
		Annular				Results of We				
Depth Set	at (m/tt) To	Type of Sea (Material ar		Volume Placed (m³/ft*)	After test of well yield, Clear and sand f		1	w Down Water Level		ecovery Water Level
42 /	32 / Neat c			10.92		Not teste	(min)	(m/ft)	(min)	(m/ft)
32.	0.′ Bentor	ite slurry		8.4	If pumping discontinue	d, give reason:	Static .	381,	1	39/6 "
					X		1	38.7	1	38.4
					Pump intake set at (ro/	((fr		38.8		38
					100		2		2	
Motho	d of Construction		Well I	Ise	Pumping rate (I/min /	PMI	3	38.9	3	38
Cable Tool	Diamond	. □Pu			20		4	39	4	38
Rotary (Cor	nventional)	200	mestic Munic	cipal Dewatering	Duration of pumping 1 hrs + 0 m	nini	5	39.1	5	38
☐ Rotary (Re\ ☐ Boring	verse)	Liv	_	Hole Monitoring ng & Air Conditioning	Final water level end of			39.2		38
Air percussi	ion	☐ Ind	ustrial	.g or continuously	39.6	· · · · · · · · · · · · · · · · · · ·	10		10	
Other, spec	ify	_ Oth	er, specify		If flowing give rate (I/mir	n/GPM)	15	39.3	15	38
	Construction Re			Status of Well			20	39.3	20	38
Inside Diameter	Open Hole OR Material (Galvanized, Fibreglass,	Wall Thickness (cm(in)	Depth (nt/th)	Replacement Well	Recommended pump	depth (m(ft))	25	39.4	25	38
(cm	Concrete, Plastic, Steel)	- 11	From To	☐ Test Hole	Recommended pump i	rato		39.4		- 38
0/44	Steel	.188	+2 42 /	_ ,	(I/min/GPM)	410	30		30	
51511"	Open Hole		42 / 122	☐ Dewatering Well ☐ Observation and/or	Well production (Vmin(916)	40	39.5	40	38
) 116				Monitoring Hole	ven production (vining	N I	50	39.6	50	38
	*			(Construction)	Disinfected?			39.6		38 7
				Abandoned, Insufficient Supply	Ø No		60		60	
<u> </u>	Construction Re	cord - Scr		Abandoned, Poor	Diametric	Map of We		TO BE IN THE PARTY OF THE		$\rightarrow \sim$
Outside Diameter	Material Plastic, Galvanized, Steel)	Slot No.	Depth (m/ft)	Water Quality Abandoned, other,	Please provide a map	Delow tollowin	g instruc	tions on th	e back	M)
(cm/in)	icoso, Garrangea, Otobiy		170111	specify		1			~	
					1 LAFF					
				Other, specify	100	.\		- In	2=	,
sara Ma	Water Deta	ails		Hole Diameter	(X)	7	*<0.1		16	
	t Depth Kind of Water:			pth (m/ft) Diameter	1	1	419		110	`
	Gas Other, spec		From	To (cm/in)	1	1	B	chi	144	^
Vater found a			Untested	0 42 7 4			1	m.	HH 4	4
Vater found a	Gas Other, spect Depth Kind of Water:		Untested	42 122 575	6ª 0.17	KIN!	1	Q1.	~~	1
	Gas Other, spec			, ,		11	1	01 1	00	_
			Fechnician Informa	ation		س_	1		(1	Δ
usiness Nam	e of Well Contractor		W	Vell Contractor's Licence No.	100	40.0	4	D. 1	الم	प
Air Rock	Drilling Co. Ltd.			7681	6	Th (ou	NOW	Food	10	,
us 6656 4	SPALEWON ROBBER/Nar	ne)	N	urtieriixond	Comments:		1		,	
rovince	Destal Carla	Direit	E mail 6 dda		1/24/212	Com-	-Sad	@1	00	13
rovince	Posta Code	Business	E-mail Address air-rock@sym	patico.ca	Well owner's Date Par	ckage Delivered	الحرين موا	Ministr	vilea	Ontic
us.Telephone	No. (inc. area code) Nan	ne of Well Te	chnician (Last Name	, First Name)	information		CAG	udit No. 7	O C C	747
6138382	1.70	Hanna	Jeremy		deliveres	21 0.9	20	-	308	2 1 T 1
el 3839	Licence No. Signature of	of Technician	and/or Contractor D	ate 202 flitted 9 30	Ves T	rk Con leted	71			trown
	Jan	my the	Y	DDMMYYY	No YYY	YMME	D Re	ceived		-
06E (2020/06)	© Queen's Printer of Ontar	6.2020		Ministry's Copy						and start .

CERTIFICATE OF WELL COMPLIANCE

(REQUIRED FOR OCCUPANCY INSPECTION ONLY)

I, Jeremy Hanna (License T3632) of AIR ROCK DRILLING CO. LTD do hereby certify that I am
Licensed to drill wells in the Province of Ontario and that I have supervised the drilling of a well on the
PROPERTY OF GRIZZLY HOMES (Name of Landowner) LOCATED AT # 2085 47H Line Beckwith, Franktown
(Civic Address)
LOT # 10 CON # 3 PEST NOTES S/L # 15
IN the TOWNSHIP OF BECKWITH - IN the COUNTY OF LANARK
AND FURTHER THAT I am aware of the well drilling requirements of the Township of Beckwith and
the guidelines, recommendations and regulations of the Ministry of the Environment as they govern
well installation in the Province of Ontario.
AND DO HEREBY CERTIFY THAT the said well has been drilled, cased and cement grouted to the
standards required.
Signed this 14TH day of JULY 2021
Air Rock Drilling Co. Ltd. (C-7681) Jeremy Hanna
MALGEO Delle Don .
Witness Debbie Davis 29Jul 2021 JORDAN D. BOWMAN PRACTISING MEMBER 3315
221

HYDROLOGIST (Signature / Stamp)

Ontario 😿	Ministry of the Environme Conservation and Parks	ent, Wel Tag#:A3	20985 _{it Below)}	Regulation 903 Ontar	Well Record
Measurements recorde	ed in: Metric Imperi	a A 320	985	Acgulation 555 Citian	Page of
Well Owner's Inform	mation			_	
First Name	Last Name/Organiz	ation II	E-mail Address		☐ Well Constructed
Mariting Address (Street N	Number/Name)	Municipality (Province	Postal Code Teler	by Well Owner phone No. (inc. area code)
DOX 428	2,224	ASK	en Ond	KOAR	2
Well Location Address of Well Location	(Street Number/Name) A	Township		Lot Cone	cession
# 2085 4	18H Line be		Deckwith	10	3
County/District/Municipal	ity	City/Town/Village	i lata.	Province Ontario	Postal Code
UTM Coordinates Zone	Easting, Northing	Municipal Plan an	d Sublot Number	Other	
NAD 8 3 8	41612281498	37683 Tu	1 ≠5	21	15
Overburden and Bedr	ock Materials/Abandonmen Most Common Material	other Materials		eral Description	Depth (m
Colloral Colloan	San	1			From To
a	-NOUL I ME	a evo.			51271
6	10 Jands	stare			27' 120'
	nova Vella	11 Amalsto	20		120' 140'
9	1				100 110
		1			
*	TWA	5 8 41	5 *		
7	4 (1		A		
	Annular Space	(1) 7:1-1:17:10		Results of Well Yield Tes	sting
Depth Set at (m/ft) From To	Type of Sealant Us (Material and Type		After test of well yield, Clear and sand		own Recovery er Level Time Water Level
421 321	Next Cenen	+ Slurge 10.90		Statio	m/ft) (min) (m/ft)
32101	Bondanik 8	1un 4.20	If pumping discording	ed, give reason: Level 37	8" 78.8"
50 0	2012.00	00-1.		1 38	3.2 1378"
			Pump intake set at (m	2 38	.a 237'8"
Method of Const	fruction	Well Use	Pumping rate (Vmin	3 B8	02 3
Cable Tool	☐ Diamond ☐ Public	☐ Commercial ☐ Not u	Duration of numaning	4 38.	3 4
	☐ Jetting ☐ Domestic ☐ Driving ☐ Livestock	☐ Municipal ☐ Dewa ☐ Test Hole ☐ Moni	the to	min 5 38	3 5
Ail percussion	☐ Digging ☐ Imigation ☐ Industrial	Cooling & Air Conditioning	Final water level end o	f pumping (mm) 10	4 10
Other, specify	Other, spec	zify	If flowing give rate (I/m	45-50	4 15
	truction Record - Casing	Status of W		20 30	5 20
Inside Open Hole O	Fibreglass, Thickness _	Depth (mft) Water Supply	Well Recommended pump	depth (north)	= 25
(cm/in) Concrete, Pla		☐ Test Hole	Recommended pump	rate 30 32	6 30
10/4 Stee	2 -188" +2	□ Dewatering W	/ell	40.50	7 40
6" Open	title 40	Observation a Monitoring Ho		50 PQ	8 50
		Alteration (Construction)		20.	
		Abandoned, insufficient Su	pply Yes No	60 58.	84 60
Outeido	truction Record - Screen	Depth (m/ft) Abandoned, P Water Quality	Please provide a maj	Map of Well Location below following instruction	
Diameter (cm/in) Materi (Plastic, Galvan		Abandoned, o	ther,	Line Bec	Kwith
			_ -	Line	2.00.1.7
		Other, specify			
	Water Details	Hole Diameter	#2	085	
Water found at Depth Kin	- ~	sted Depth (m Diar	neter ATH	LINE	
	Other, specify	1 1 1 1 1 1 2	L' anch	with !	FT
41 - 0	Other, specify	121 110	4 Pet	0111	00:50
	nd of Water: Fresh Unter	sted 70 (6	TW#	2	1 WM.
	Other, specify Contractor and Well Techni	cian Information		(10.1
Business Name of Well Co	and the same of th	Well Contractor's Licens	DE NO.	0 100	- 101
Business Address (Street	DRILLING CO	MD 4768	Comments	renthe	
Business Address (Street N	anktown Re	Abnicipality Col Kichman	Comments:	0000 O-K	DIRAR
() \ \ .	Business E-mail	Address	1041	CONTO DEL	-100,
Bus. Telephone No. (inc. area	a code) Name of Well Technicia	an (Last Name, First Name)	Well owner's Date Painformation package	ackage Delivered Audit	Ministry Use Only No. Z355098
6383821	70 HANNE	+ Jesemy	delivered Date W	ork Completed	- 3 33036
Well Technician's Licence No.	Signature of Technician and/or	1 18 - 21 - 2	No No	21 MI A Receiv	red .
0506E (2020/06) © Queen's Pr	rinter før Intario, 2029	Ministry's C		I STATE OF THE PARTY OF THE PAR	A TANK THE WALLEST SERVICES

Pon	ntario	Ministry o	onment		Nel	A105321	nt Below)	Regulation	903 On		r Reso	ecord urces Act
The state of the s	nts recorded i		ic Xim	perial _	200000		MUNICIPAL DE LA COMPANSION DE LA COMPANS	44425504E	164502			
First Name	er's Informa		Name / Or	ganization	auren	Dowdall	E-mail Address					onstructed
Moiling Addr	oss (Street Nu		9-7	opin or L			Province.	Postal Code	ADT Te	elephone No	-	rea code)
2030	Fourth L	ine Becl	kwith			Franktown	ON	K/A	45/			
Well Locat	ion Vell Location (3) Fourth	ine Becl	r/Name) kwith	e ige sommer.	Т	ownship Beckwith	on reinougen artista retaide fuel	Lot 10 Concession				
	ict/Municipality	/		The sections	C	ity/Town/Village			Ontai	4	Postal	Code
Lana UTM Coordin NAD {	ates Zone E	asting 41585	The second second	thing 498848		Franktown funicipal Plan and Suble	ot Number		Other	110		
Overburde	n and Bedroo	k Materials	/Abandon	ment Seal	ing Reco	rd (see instructions on the	back of this form)		\$1232A		Dept	h (m
General Col	lour M	ost Common	Material		Oth	er Materials Sand Gr		eral Description			From	4 /
0			Sands	tano 1.3	dar			ALVOIS BEING BEV'S	VOLUM TO A STATE OF	100000000000000000000000000000000000000	4	71
Grey	a whi		Sands	1	1	ey Limeston		and Supplemental	an contract		71	75
Grey			Sands	-	1910	24 Limeston					75 ′	81
Grey	Two	re	Janus	LOTTE O	1 1							
		ESPERAINT.	Annular S	Space	HSO S.	12414	Mark Mark	Results of W	-			
Depth Se	t at (max)		ype of Seal	ant Used		Volume Placed	After test of well yield	free	Time	w Down Water Level	-	ecovery Water Level
40	0'	Neat cen	nent 5	wry		17.2	Other, specify	Not teste	(min)	(m/ft),	(min)	(m/ft) ,,
							If pumping discontinu	ied, give reason	Level	23.5		18.3
							X	0	1		1	18.3
							Pump intake set at 60	(nCE)	2	24.3	2	
					Well Us		Pumping rate (Vmin	GPMD	3	25.4	3	18.3
Meth	od of Const	Diamond	Pub	olic	Comme		20		4	26.1	4	18.3
Rotary (C		Jetting Driving	Dor		Municip		Duration of pumpin 1 hrs + 0		5	26.7	5	18.3
Boring		Digging	☐ Irrig	ation		& Air Conditioning	Final water/level,end	of pumping (m/l	10	27.5	10	18.3
Air percu Other, sp			☐ Indi	ustrial ier, <i>specify</i> _			If flowing give rate (I/min / GPM)	15	27.9	15	18.3
722255	Const	ruction Rec				Status of Well	X		20	28.	20	18.3
Inside Diameter	Open Hole O (Galvanized, I		Wall Thickness (cm/h)	Depth	(m) To	Water Supply Replacement Well	Recommended pur	np depth (riv(ft)	25	28.1	25	18.3
6 tr	Steel	stic, Steel)	.188	+2'	40	☐ Test Hole ☐ Recharge Well	Recommended pur	mp rate	30	28.2	30	18.3
578"	Open He	ale	. 100	40	81	Dewatering Well	(Vmin 52001)		40	28.4	40	18.3
3//0	Openin	,ie		40	0.	Observation and/or Monitoring Hole	Well production (I/n	nin AGPMP	50	28.5	50	18.3
						Alteration (Construction)	Disinfected?		60	28.6	60	18.3
						Abandoned, Insufficient Supply	XVes No	Map of \		ation	-	
Outside	Cons	struction Rec	cord - Scre		n (m/ft)	Abandoned, Poor Water Quality	Please provide a ma				back.	
Diameter (cm/in)	(Plastic, Galva		Slot No.	From	То	Abandoned, other, specify			1			
									1	\	_	
	1					Other, specify				115	1	1
		Water Deta			-	Hole Diameter		·IX	N	4	1	hmond
74	nd at Depth Ki		60 5 7 THE P. LEWIS CO., LANSING, MICH.	Untested	De From	pth (m/ft) Diameter To (cm/in)			-	1	Pic	0.00
1	n Gas Gas dad at Depth K			Xuntested		0 40 6	1 1	E		1		to the
		Other, spec		Untented	4	10 81 57/8"	10,0	230) \	8	/	
	nd at Depth K			Untested			T X	of st	M	at	1	
HILLIE	Well	Contractor		Technicia				2030 outsty	KNI		,	
	lame of Well C ock Drilling				V	Vell Contractor's Licence No 1119	1	Be				
	Hankloven		(#) 1		N	Auptichitiond	Comments:					
Province		KOA 220		s E-mail Add		patico.ca	Well owner's Date	e Package Delive	ered	Minis	stry Us	se Only
Bus.Teleph	one No. (inc. an	sa code) Nan	ne of Well	Technician (Last Name	e, First Name)	information package		8 18	Audit No.	10	700
61383	82170	111	Hogai	n, Dan			delivered	e Work Complete	ed	ZI	CT	1 2011
W-T30	58 Licence N	o. Signature	of Technicia	an and/or Co	ontractor D	Date 28 fulfted 0 8 3		2011 O		Received	41	1 201
		1150	of the			Ministry's Cor						

Well Record - Regulation 903 Ontario Water Resources Act

Notice of Collection of Personal Information

100

Most Common Material

Well Depth *

General Colour

Personal information contained on this form is collected pursuant to sections 35-50 and 75(2) of the Ontario Water Resources Act and section 16.3 of the Wells Regulation. This information will be used for the purpose of maintaining a public record of wells in Ontario. This form and the information contained on the form will be stored in the Ministry's

well record da	atabase and er Service F	d made p Represer	oublicly a ntative a	available. Ques t the Wells Help	tions abo	ut this collec	tion should be d	irected to the Water Ontario M9P 3V6, at
Fields marked	with an aste	erisk (*) ar	e manda	tory.				
							Well Tag I	Number *
							A 363510	
Type *								
✓ Constructio	n	Abandonn	nent					
— Measurement		n: *						
Metric	√ I	mperial						
1. Well Own	er's Infor	mation						
Last Name and	I First Name	e, or Orga	nization i	s mandatory. *				
Last Name					First Na	ame		
Organization Jackson Hom	es Inc.				Email	Address		
Current Addre	ess							
Unit Number	Street	Number '	Stre	et Name *			City/Town/Village	
								—
Country Canada				Province ON			Postal Code	Telephone Number
2. Well Loca	ation			OIT				
Address of We)						
Unit Number	Street Nur		Street N Perth R				Township Beckwith	
Lot SW 1/2 Lot 10)		Concess 3	sion		County/Dist	rict/Municipality	
City/Town Smiths Falls						Province Ontario		Postal Code K7A 4S7
UTM Coordinat	tes Zone *	Easting	*	Northing *			Municipal Plan ar	nd Sublot Number
NAD 83	18	416202	2	4987410	Test	UTM in Map		
Other	-						•	
3. Overburde	en and Bed	drock Ma	aterial *					

2193E (2020/01) Page 4 of 8

General Description

Depth From

Depth To

Other Materials

(ft)

				(ft)	(ft)
	Clay	Gravel	Stones	0	3
Grey	Sandstone			3	100

4. Annular Sp	ace *										
Depth From	Depth To	Type of Sealant Used (Mater	ial and Type)	Volume	Placed						
(ft)	(ft)			(cubic	: feet)						
0	20	Bentonite (Quick G	rout)	2.4	48						
20	40	Cement		1.2	24						
5. Method of C	Construction ³	*									
Cable Tool Jetting Other (specif	Driving	onventional)	Boring Air perc Augering Direct P		amond						
6. Well Use *											
Public	Indu	ıstrial Cooling & Air Condit	tioning								
✓ Domestic Commercial Not Used											
Livestock Municipal Monitoring											
Irrigation	Tes	t Hole Dewatering									
Other (specif	fy)										
7. Status of W	/ell *										
✓ Water Supply	у	Replacement Well	Test Hole								
Recharge W	ell [Dewatering Well	Observation and/or Monit	toring Hole							
Alteration (C	onstruction) [Abandoned, Insufficient Supply 🔲 🗸	Abandoned, Poor Water	Quality							
Abandoned,	other (specify)										
Other (specif	fy)										
8. Construction	on Record - C	asing * (use negative number(s) to indi	icate depth above ground	d surface)							
Inside		Hole or Material (Galvanized, Fibreglass,	Wall	Depth From	Depth To						
Diameter (in)		Concrete, Plastic, Steel)	Thickness	(ft)	(ft)						
6.25		Steel	0.188	-2	40						
9. Construction	on Record - S	creen									
Outside Diameter (in)		Material (Plastic, Galvanized, Steel)	Slot Number	Depth From (ft)	Depth To (ft)						

2193E (2020/01) Page 5 of 8

10. Water Det	tails													
Water found at	Depth 44	1	(ft)	Gas	Kind of	water	r Fres	h 🗸 l	Jntested	O1	her			
Water found at	Depth 80)		Gas	Kind of	water	r	h 🗸 l	Jntested	O1	her			
Water found at	Depth <mark>90</mark>)		Gas	Kind of	water	r 🗌 Fres	h 🗸 l	Jntested	Of	her			
11. Hole Diam	neter													
De	epth Fror	m			Dep	th To					Diamete	r		
	(ft)			(ft)							(in)			
	0				4	10					10			
	40				10	00					6			
12. Results o	f Well Y	ield Te	sting											
Pumping Dis	scontinue	ed												
Explain														
If flowing give ra	ate													
Flowing _					((GPM))							
Draw down				•	_			_						•
Time (min)	Static Level	1	2	3	4	5	5 10	15	20	25	30	40	50	60
Water Level (ft)	32.6	33.1	33.2	33.25	33.3	33	.3 33.45	33.5	33.5	33.55	33.55	33.6	33.6	33.6
Recovery				· ·		Į.	· ·		•	•	•		1	
Time (mir	۱)	1	2	3	4	5	10	15	20	25	30	40	50	60
Water Lev	'el	33.1	33	32.95	32.9	32.8	5 32.7	32.6	32.6	32.6	32.6	32.6	32.6	32.6
After test of wel	I vield, w	ater wa	l S										<u> </u>	
✓ Clear and sa			ner (spec	ify)										
Pump intake se	t at Pun	nping ra	te	Duration	of pun	nping		Final water level end of pumping Disinfected? *					? *	
80	(ft) 20		(GPM)	1	hrs -	+ 0	min	33.6			(ft)	✓	Yes [No
Recommended	pump de	epth	Recom	mended	pump ra	ate V	Vell produc	ction						
80		(ft)	20		(GP	PM) 4	10		(GPM)					
13. Map of W	ell Loca	tion *												

2193E (2020/01) Page 6 of 8

✓ Make map area bigger

Map 1. Please Click the map area below to import an image file to use as the map.

14. Information		
Well owner's information package delivered	Date Package Delivered (yyyy/mm/dd)	Date Work Completed (yyyy/mm/dd) *
✓ Yes No	2022/10/25	2022/10/21
Comments		

Comments

15. Well Con	tractor and Wo	ell Technician	Information					
	e of Well Contractions Well Drilling				Well Contractor's License Number * 2558			
Business Add	Iress				'			
Unit Number	Street Number 256	- 1, 1, - 1, - 1, - 1, - 1, - 1, -	Street Name * Hall Shore Road					
City/Town/Villa				Prov	Province ON		Postal Code * K0G 1M0	
Business Tele 613-278-058	ohone Number	Business Ema info@wilfhalla		•				
Last Name of Well Technician * Hall			First Name of Well Technician * Scott			Well Technician's License Number 2760		

16. Declaration *

2193E (2020/01) Page 7 of 8

[✓] I hereby confirm that I am the person who constructed the well and I hereby confirm that the information on the form is correct and accurate.

Last Name
Hall

Scott

First Name
Scott

Email Address
info@wilfhallandsons.com

Date Submitted (yyyy/mm/dd)

Digitally signed by Scott Hall
Date: 2022.10.26 10:41:01 -04'00'

2022/10/26

17. Ministry Use Only

Audit Number

BPPW H999

2193E (2020/01) Page 8 of 8

HYDROGEOLOGICAL ASSESSMENT AND TERRAIN ANALYSIS GRIZZLY HOMES SUBDIVISION, BECKWITH, ONTARIO

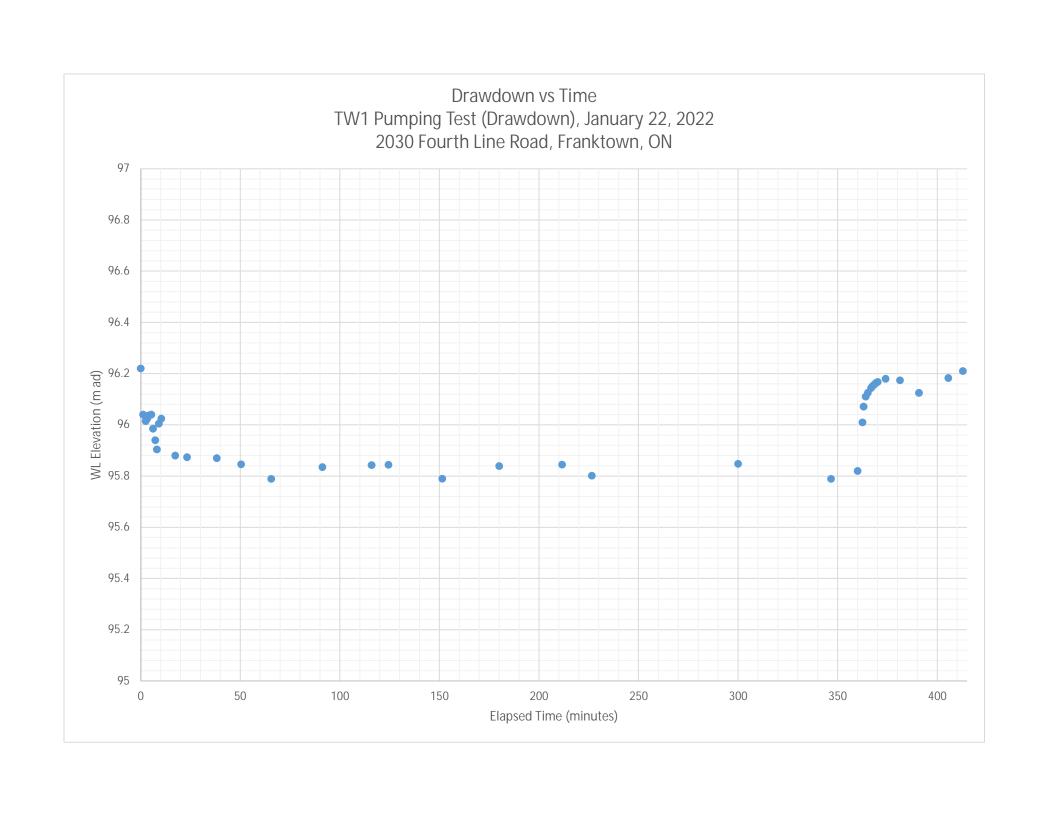
APPENDIX D: MECP WELL RECORDS SUMMARY

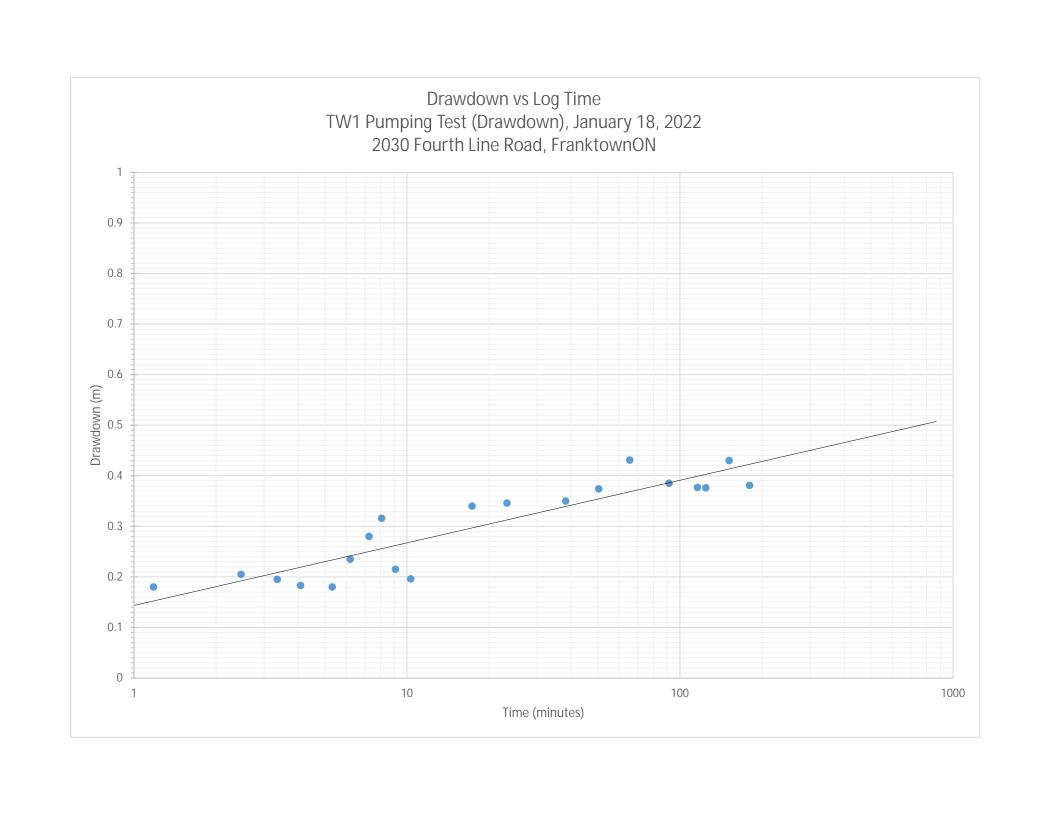
WELL_ID	COMPLETED	WELL DEPTH (m)	STATIC WATER LEVEL (m)	DEPTH TO BEDROCK (m) FINAL STATUS	USE1	GEOLOGY	FORMATION_TOP_DEPTH	FORMATION_END_DEPTH	UNITS OF MEASUREMENT
2410073	07-Aug-04	34.7	2	4.3 Water Supply	Domestic	CLAY,,	0	4.2 m	GIVITS OF IVEASOREIVERY
2410073	07-Aug-04	34.7	2	4.3 Water Supply	Domestic	,DOLOMITE,	4.2	6 m	
2410073	07-Aug-04	34.7	2	4.3 Water Supply	Domestic	,DOLOMITE,	6	34.7 m	
3500134 3500134	01-Apr-63	22.9 22.9		0.9 Water Supply	Domestic	MEDIUM SAND, TOPSOIL,	0	3 ft 75 ft	
3500134	01-Apr-63 25-May-61	14.9	5.5	0.9 Water Supply 0 Water Supply	Domestic Domestic	SANDSTONE,, SHALE,,	0	75 II 10 ft	
3500278	25-May-61	14.9	5.5	0 Water Supply	Domestic	SANDSTONE,,	10	49 ft	
3500299	08-Mar-62	30.5	10.7	0.6 Water Supply	Domestic	TOPSOIL,,	0	2 ft	
3500299	08-Mar-62	30.5	10.7	0.6 Water Supply	Domestic	LIMESTONE, MEDIUM SAND,	2	100 ft	
3500300	23-Jul-65	26.2	11.3	0.6 Water Supply	Domestic	MEDIUM SAND, TOPSOIL,	0	2 ft	
3500300 3500300	23-Jul-65 23-Jul-65	26.2 26.2	11.3 11.3	0.6 Water Supply	Domestic Domestic	SANDSTONE,, SANDSTONE,,	2	6 ft 86 ft	
3500300	23-Jul-65 24-Apr-62	16.8	3.4	0.6 Water Supply 0.3 Water Supply	Domestic	TOPSOIL,MEDIUM SAND,	0	1 ft	
3500301	24-Apr-62	16.8	3.4	0.3 Water Supply	Domestic	SANDSTONE, MEDIUM SAND,	1	13 ft	
3500301	24-Apr-62	16.8	3.4	0.3 Water Supply	Domestic	SANDSTONE,,	13	55 ft	
3500307	26-Nov-59	15.2	7.9	1.2 Water Supply	Domestic	TOPSOIL,MEDIUM SAND,	0	4 ft	
3500307	26-Nov-59	15.2	7.9	1.2 Water Supply	Domestic	SHALE,,	4	11 ft	
3500307 3500308	26-Nov-59 29-Oct-55	15.2 25.6	7.9 7.6	1.2 Water Supply	Domestic Domestic	SANDSTONE,, TOPSOIL,,	11	50 ft 1 ft	
3500308	29-Oct-55	25.6	7.6	0.3 Water Supply 0.3 Water Supply	Domestic	SANDSTONE,,	1	84 ft	
3500309	24-Sep-56	21	4.6	0 Water Supply	Domestic	LIMESTONE, MEDIUM SAND,	0	69 ft	
3500310	19-Mar-59	22.9	5.5	0.3 Water Supply	Domestic	TOPSOIL,MEDIUM SAND,	0	1 ft	
3500310	19-Mar-59	22.9	5.5	0.3 Water Supply	Domestic	SANDSTONE,,	1	75 ft	
3500311	08-May-59	21	6.1	0.3 Water Supply	Domestic	TOPSOIL,MEDIUM SAND,	0	1 ft	
3500311	08-May-59	21	6.1	0.3 Water Supply	Domestic	SANDSTONE,,	1	69 ft	
3500312 3500312	25-Jul-61 25-Jul-61	22.3	6.7	1.2 Water Supply 1.2 Water Supply	Domestic Domestic	TOPSOIL,MEDIUM SAND, SANDSTONE	0	4 ft 73 ft	
3500312	02-Sep-64	22.6	7.6	1.8 Water Supply	Domestic	TOPSOIL,MEDIUM SAND,	0	6 ft	
3500313	02-Sep-64	22.6	7.6	1.8 Water Supply	Domestic	SANDSTONE,,	6	74 ft	
3500314	12-Aug-66	28	10.7	0 Water Supply	Livestock	SANDSTONE,,	0	92 ft	
3500315	26-Mar-59	18.3	5.2	0.9 Water Supply	Domestic	TOPSOIL,MEDIUM SAND,	0	3 ft	
3500315	26-Mar-59	18.3	5.2	0.9 Water Supply	Domestic	SHALE,,	3	7 ft	
3500315 3500318	26-Mar-59 28-Oct-59	18.3 23.5	5.2 3.7	0.9 Water Supply	Domestic Domestic	SANDSTONE,, TOPSOIL,STONES,	7	60 ft 5 ft	
3500318	28-Oct-59	23.5	3.7	1.5 Water Supply 1.5 Water Supply	Domestic	LIMESTONE,	5	77 ft	
3500319	14-May-60	21.6	3.7	1.2 Water Supply	Domestic	TOPSOIL.MEDIUM SAND.	0	4 ft	
3500319	14-May-60	21.6	3.7	1.2 Water Supply	Domestic	MEDIUM SAND, SHALE,	4	12 ft	
3500319	14-May-60	21.6	3.7	1.2 Water Supply	Domestic	SANDSTONE,,	12	71 ft	
3500320	25-Jul-63	22.9	5.5	3.7 Water Supply	Domestic	CLAY, TOPSOIL,	0	12 ft	
3500320	25-Jul-63	22.9	5.5	3.7 Water Supply	Domestic	SANDSTONE,,	12	75 ft	
3502343 3502343	26-Apr-68 26-Apr-68	20.1 20.1	2.4 2.4	0.6 Water Supply 0.6 Water Supply	Domestic Domestic	CLAY,TOPSOIL, SANDSTONE,,	0 2	2 ft 66 ft	
3502343	04-Mar-69	18.9	5.5	0.6 Water Supply	Commerical	GRAVEL, TOPSOIL,	0	2 ft	
3502416	04-Mar-69	18.9	5.5	0.6 Water Supply	Commerical	LIMESTONE,,	2	57 ft	
3502416	04-Mar-69	18.9	5.5	0.6 Water Supply	Commerical	SANDSTONE,,	57	62 ft	
3502816	13-Jul-71	23.2	10.4	1.2 Water Supply	Domestic	MEDIUM SAND,,	0	4 ft	
3502816	13-Jul-71	23.2	10.4	1.2 Water Supply	Domestic	SANDSTONE,,	4	76 ft	
3502881	18-Aug-71	24.4	12.2	0.9 Water Supply	Domestic	TOPSOIL,MEDIUM SAND,STONES	0	3 ft	
3502881	18-Aug-71	24.4	12.2	0.9 Water Supply	Domestic	SANDSTONE,,	3	20 ft	
3502881	18-Aug-71	24.4	12.2	0.9 Water Supply	Domestic	SANDSTONE,LIMESTONE,	20	70 ft	
3502881	18-Aug-71	24.4	12.2	0.9 Water Supply	Domestic	SANDSTONE, MEDIUM SAND,	70	80 ft	
3502883	17-Jul-71	25.9	8.2	1.5 Water Supply	Domestic	TOPSOIL,MEDIUM SAND,STONES	0	5 ft	
3502883 3502883	17-Jul-71 17-Jul-71	25.9 25.9	8.2 8.2	1.5 Water Supply	Domestic Domestic	SANDSTONE,, LIMESTONE,SANDSTONE,	5 21	21 ft 68 ft	
3502883	17-Jul-71 17-Jul-71	25.9	8.2	1.5 Water Supply 1.5 Water Supply	Domestic	SANDSTONE, SANDSTONE,	68	85 ft	
3503274	29-Sep-72	30.5	9.1	0.3 Water Supply	Domestic	FILL,	0	1 ft	
3503274	29-Sep-72	30.5	9.1	0.3 Water Supply	Domestic	LIMESTONE,,	1	40 ft	
3503274	29-Sep-72	30.5	9.1	0.3 Water Supply	Domestic	SANDSTONE,,	40	58 ft	
3503274	29-Sep-72	30.5	9.1	0.3 Water Supply	Domestic	SANDSTONE,	58	65 ft	
3503274 3503274	29-Sep-72	30.5 30.5	9.1 9.1	0.3 Water Supply	Domestic Domestic	SANDSTONE,, SANDSTONE,,	65 72	72 ft 100 ft	
3503274	29-Sep-72 27-Jun-73	30.5 27.4	9.1 10.7	0.3 Water Supply 0.3 Water Supply	Domestic	TOPSOIL	0	100 ft 1 ft	
3503383	27-Jun-73	27.4	10.7	0.3 Water Supply	Domestic	LIMESTONE,,	1	60 ft	
3503383	27-Jun-73	27.4	10.7	0.3 Water Supply	Domestic	SANDSTONE,,	60	90 ft	
3503454	06-Jul-73	22.9	6.1	1.8 Water Supply	Domestic	TOPSOIL,,	0	6 ft	
3503454	06-Jul-73	22.9	6.1	1.8 Water Supply	Domestic	LIMESTONE,SANDY,	6	75 ft	
3503664	15-Oct-73	25.9	5.5	0.3 Water Supply	Domestic	CLAY, TOPSOIL,	0	1 ft	
3503664 3503718	15-Oct-73	25.9 27.4	5.5 0.3	0.3 Water Supply	Domestic Domestic	SANDSTONE,, CLAY,,	1	85 ft 1 ft	
3503718	10-May-74 10-May-74	27.4	0.3	0.3 Water Supply 0.3 Water Supply	Domestic	SANDSTONE,,	1	90 ft	
3503763	15-Jul-74	21.9	9.4	1.2 Water Supply	Domestic	TOPSOIL,,	0	4 ft	
3503763	15-Jul-74	21.9	9.4	1.2 Water Supply	Domestic	LIMESTONE,SAND,	4	72 ft	
3504268	14-Aug-75	25.9	10.1	0.6 Water Supply	Domestic	SAND,STONES,LOOSE	0	2 ft	
3504268	14-Aug-75	25.9	10.1	0.6 Water Supply	Domestic	SANDSTONE, SAND, LAYERED	2	16 ft	
3504268 3504268	14-Aug-75 14-Aug-75	25.9 25.9	10.1	0.6 Water Supply	Domestic Domestic	LIMESTONE,HARD, LIMESTONE,SAND,LAYERED	16 73	73 ft 85 ft	
3504268 3504368	21-May-76	25.9 33.5	6.1	0.6 Water Supply 0 Water Supply	Domestic	LIMESTONE, SAND, LAYERED	73	85 IT 40 ft	
3504368	21-May-76	33.5	6.1	0 Water Supply	Domestic	SANDSTONE,,	40	110 ft	
3504536	26-Oct-76	23.2	5.5	0.6 Water Supply	Domestic	TOPSOIL,,	0	2 ft	
3504536	26-Oct-76	23.2	5.5	0.6 Water Supply	Domestic	SANDSTONE,,	2	76 ft	

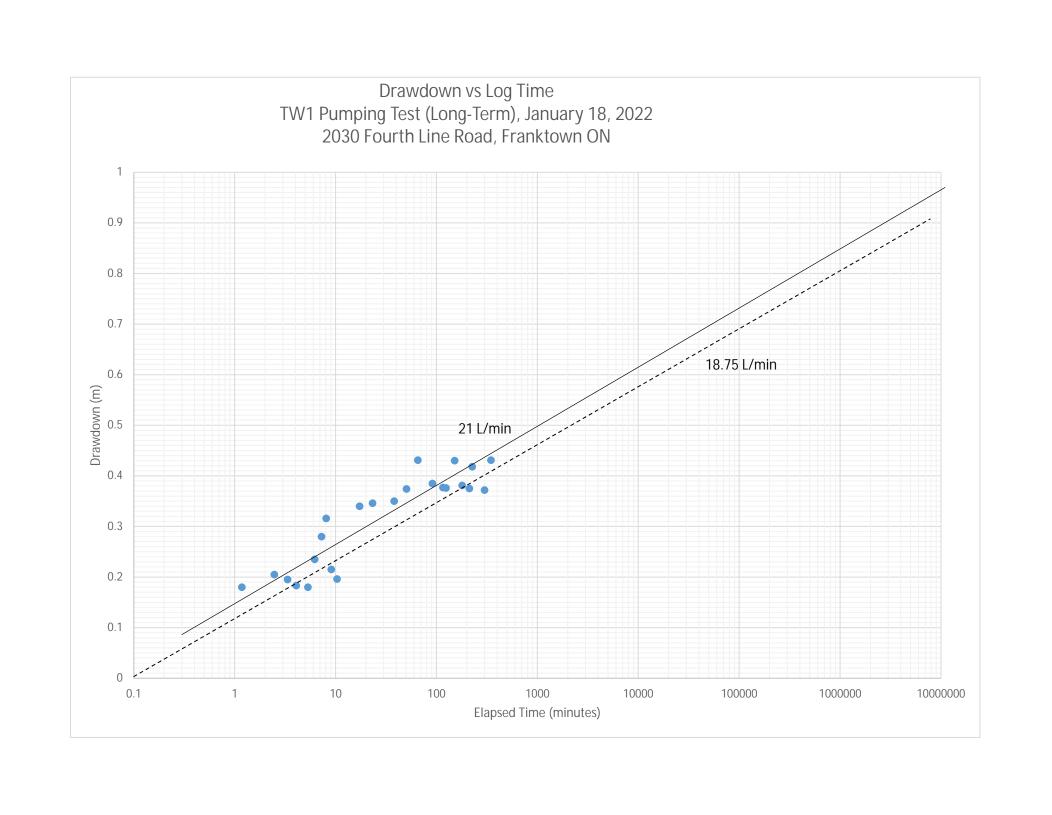
3504537	27-Oct-76	29	5.5	0.3 Water Supply	Domestic	TOPSOIL,STONES,	0	1 ft
3504537	27-Oct-76	29	5.5	0.3 Water Supply	Domestic	SANDSTONE,,	1	30 ft
							I I	
3504537	27-Oct-76	29	5.5	0.3 Water Supply	Domestic	LIMESTONE,,	30	95 ft
3504815	23-Nov-77	27.7	1.2	0.6 Water Supply	Domestic:	TOPSOIL	0	2 ft
3504815	23-Nov-77	27.7	1.2	0.6 Water Supply	Domestic	LIMESTONE,,	2	20 ft
3504815	23-Nov-77	27.7	1.2	0.6 Water Supply	Domestic	SANDSTONE,,	20	91 ft
3505131	04-Jul-78	27.4	10.7		Domestic	TOPSOIL	0	1 ft
				0.3 Water Supply			U	
3505131	04-Jul-78	27.4	10.7	0.3 Water Supply	Domestic	LIMESTONE,,	1	45 ft
3505131	04-Jul-78	27.4	10.7	0.3 Water Supply	Domestic	SANDSTONE,,	45	90 ft
	01 Nov. 70							
3505618	01-Nov-79	27.4	5.5	0 Water Supply	Domestic	SANDSTONE,,	0	90 ft
3505792	15-Apr-80	22.9	6.1	0 Water Supply	Domestic	SANDSTONE,,	0	15 ft
3505792	15-Apr-80	22.9	6.1	0 Water Supply	Domestic	SANDSTONE,,	15	75 ft
3506595	04-Oct-83	24.4	12.2	1.5 Water Supply	Livestock	FILL,,	0	5 ft
3506595	04-Oct-83	24.4	12.2	1.5 Water Supply	Livestock	LIMESTONE, SANDY,	5	25 ft
3506595	04-Oct-83	24.4	12.2	1.5 Water Supply	Livestock	SANDSTONE,,	25	80 ft
3506603	10-Jan-83	25.6	10.7	0 Water Supply	Domestic	SANDSTONE,,	0	84 ft
3508675	07-Sep-88	23.2	7.6	0.6 Water Supply	Domestic	FILL	0	2 ft
3508675	07-Sep-88	23.2	7.6	0.6 Water Supply	Domestic	LIMESTONE,,	2	56 ft
3508675	07-Sep-88	23.2	7.6	0.6 Water Supply	Domestic	SANDSTONE,,	56	76 ft
3509074	26-Oct-89	24.4	13.7	O.C. Wester Councilla	Domestic	GRAVEL,TOPSOIL,LOOSE	0	2 ft
				0.6 Water Supply			U	
3509074	26-Oct-89	24.4	13.7	0.6 Water Supply	Domestic	SANDSTONE, HARD,	2	80 ft
3510822	03-Sep-93	27.4	12.5	1.8 Water Supply	Domestic	TOPSOIL,SANDY,DRY	0	6 ft
3510822	03-Sep-93	27.4	12.5	1.8 Water Supply	Domestic	SANDSTONE, VERY, HARD	6	90 ft
3511553	06-Jul-95	29	7.6	0.9144 Water Supply	Domestic	ROCK,FILL,	0	3 ft
3511553	06-Jul-95	29	7.6	0.0144 Water Supply	Domestic	SANDSTONE,,	3	95 ft
				0.9144 Water Supply				
3512519	22-Oct-98	30.5	9.4	3.4 Water Supply	Domestic	CLAY,,	0	11 ft
3512519	22-Oct-98	30.5	9.4	3.4 Water Supply	Domestic	LIMESTONE,,	11	30 ft
3512519	22-Oct-98	30.5	9.4	3.4 Water Supply	Domestic	SANDSTONE,,	30	100 ft
3512844	29-Oct-99	29.3	4.3	1.2336 Water Supply	Domestic	ROCK, FILL,	0	4 ft
3512844	29-Oct-99	29.3	4.3		Domestic	LIMESTONE,,	4	63 ft
				1.2336 Water Supply				
3512844	29-Oct-99	29.3	4.3	1.2336 Water Supply	Domestic	SANDSTONE,,	63	96 ft
3514514	12-Apr-04	21.3	6.2	0.9 Water Supply	Domestic	FILL,	0	0.91 m
				0.7 Water Supply				
3514514	12-Apr-04	21.3	6.2	0.9 Water Supply	Domestic	SANDSTONE,,	0.91	21.3 m
3514558	19-May-04	30.5	8.8	0.9 Water Supply	Domestic	FILL	0	0.91 m
3514558	19-May-04	30.5	8.8	0.9 Water Supply	Domestic	LIMESTONE, SANDSTONE,	0.91	30.5 m
				0.7 Water Suppry				
3515533	20-Oct-06	39.6	0.5	0.6 Water Supply	Domestic	TOPSOIL,,	0	0.6 m
3515533	20-Oct-06	39.6	0.5	0.6 Water Supply	Domestic	LIMESTONE,,	0.6	39.6 m
				o continue of	Domostic			
7126066	11-Jun-06	24.4	3.2	0.3084 Water Supply		TOPSOIL,,	0	1 m
7126066	11-Jun-06	24.4	3.2	0.3084 Water Supply		SANDSTONE,,	1	24.4 m
7131322	17-Sep-09	24.4	4.9	0.3048 Water Supply	Domestic	SAND,,	0	1 ft
				0.3046 Water Supply			U	
7131322	17-Sep-09	24.4	4.9	0.3048 Water Supply	Domestic	LIMESTONE,,	1	80 ft
7148253	24-Jun-10	24.4		0.9144 Water Supply	Domestic	CLAY,STONES,	0	3 ft
7148253	24-Jun-10	24.4		0.9144 Water Supply	Domestic	SANDSTONE,,	3	76 ft
7148253	24-Jun-10	24.4		0.9144 Water Supply	Domestic	SANDSTONE,,	76	80 ft
3508666	29-Feb-88	29	4.6	0.6 Water Supply	Domestic	TOPSOIL,,	0	2 ft
		27						
3508666	29-Feb-88	29	4.6	0.6 Water Supply	Domestic	LIMESTONE,,	2	35 ft
3508666	29-Feb-88	29	4.6	0.6 Water Supply	Domestic	SANDSTONE,,	35	95 ft
3508672		23.8						
	21-Sep-88		12.2	0.6 Water Supply	Domestic	TOPSOIL,STONES,	0	2 ft
3508672	21-Sep-88	23.8	12.2	0.6 Water Supply	Domestic	SHALE,,	2	8 ft
3508672	21-Sep-88	23.8	12.2	0.6 Water Supply	Domestic	LIMESTONE,,	8	36 ft
				o.o water suppry				
3508672	21-Sep-88	23.8	12.2	0.6 Water Supply	Domestic	SANDSTONE,,	36	78 ft
3508676	13-Sep-88	25	12.2	0 Water Supply	Domestic	LIMESTONE,,	0	30 ft
3508676	13-Sep-88	25	12.2	0 Water Supply	Domestic	SANDSTONE,,	30	82 ft
3509139	22-Nov-89	33.5	5.5	0 Water Supply	Domestic	LIMESTONE,,	0	20 ft
3509139	22-Nov-89	33.5	5.5	0 Water Supply	Domestic	SANDSTONE,,	20	110 ft
3510402	29-Jul-92	21.3	4.6	0 Water Supply	Domestic	SHALE,,	0	7 ft
3510402	29-Jul-92	21.3	4.6	0 Water Supply	Domestic	SANDSTONE,,	7	70 ft
3512946	03-Apr-00	36.6	4.3	0.3 Water Supply	Domestic	CLAY,,	0	1 ft
							U	
3512946	03-Apr-00	36.6	4.3	0.3 Water Supply	Domestic	LIMESTONE,,	1	120 ft
3513366	22-May-01	31.4	4.6	0.9 Water Supply	Domestic	SAND,,	0	3 ft
3513366	22-May-01	31.4	4.6	0.9 Water Supply	Domestic	SANDSTONE,,	3	103 ft
							-	
7169696	16-Aug-11	24.7	5.6	1.2192 Water Supply	Domestic	SAND,GRAVEL,	0	4 ft
7169696	16-Aug-11	24.7	5.6	1.2192 Water Supply	Domestic	SANDSTONE,LIMESTONE,	4	71 ft
				1.2172 Water Supply				
7169696	16-Aug-11	24.7	5.6	1.2192 Water Supply	Domestic	SANDSTONE,LIMESTONE,	71	75 ft
7169696	16-Aug-11	24.7	5.6	1.2192 Water Supply	Domestic	SANDSTONE,LIMESTONE,	75	81 ft
			-					
7186914	03-Aug-12	15.2		0.9144 Observation Wells	Monitoring and Test	SAND, TOPSOIL, DRY	0	3 ft
					Hole	, , , , , , , , , , , , , , , , , , , ,	1	
					Monitoring and Test			
7186914	03-Aug-12	15.2		0.9144 Observation Wells		LIMESTONE, SAND, LAYERED	3	50 ft
					Hole			
7228030	26-Aug-14	30.8	8.9	0.6144 Water Supply	Domestic	SAND, FILL,	0	3 ft
7228030	26-Aug-14	30.8	8.9	0.6144 Water Supply	Domestic	SANDSTONE,,	3	73 ft
7228030	26-Aug-14	30.8	8.9	0.6144 Water Supply	Domestic	SANDSTONE,,	73	78 ft
7228030	26-Aug-14	30.8	8.9	0.6144 Water Supply	Domestic	SANDSTONE,,	78	91 ft
				0.6144 W-t Co				
7228030	26-Aug-14	30.8	8.9	0.6144 Water Supply	Domestic	SANDSTONE,,	91	101 ft
7235413	03-Dec-14	24.4		0 Water Supply	Domestic	SANDSTONE,,	0	54 ft
7235413	03-Dec-14	24.4		0 Water Supply	Domestic	SANDSTONE,,	54	56 ft
				0 Water Supply				
7235413	03-Dec-14	24.4		0 Water Supply	Domestic	SANDSTONE,,	56	74 ft
7235413	03-Dec-14	24.4		0 Water Supply	Domestic	SANDSTONE,,	74	80 ft
				0.4004 Water Supply			0	
7292087	19-Jul-17	36.6		0.6096 Water Supply	Domestic	CLAY,GRAVEL,	0	2 ft
7292087	19-Jul-17	36.6		0.6096 Water Supply	Domestic	SANDSTONE,,	2	120 ft
1272001								

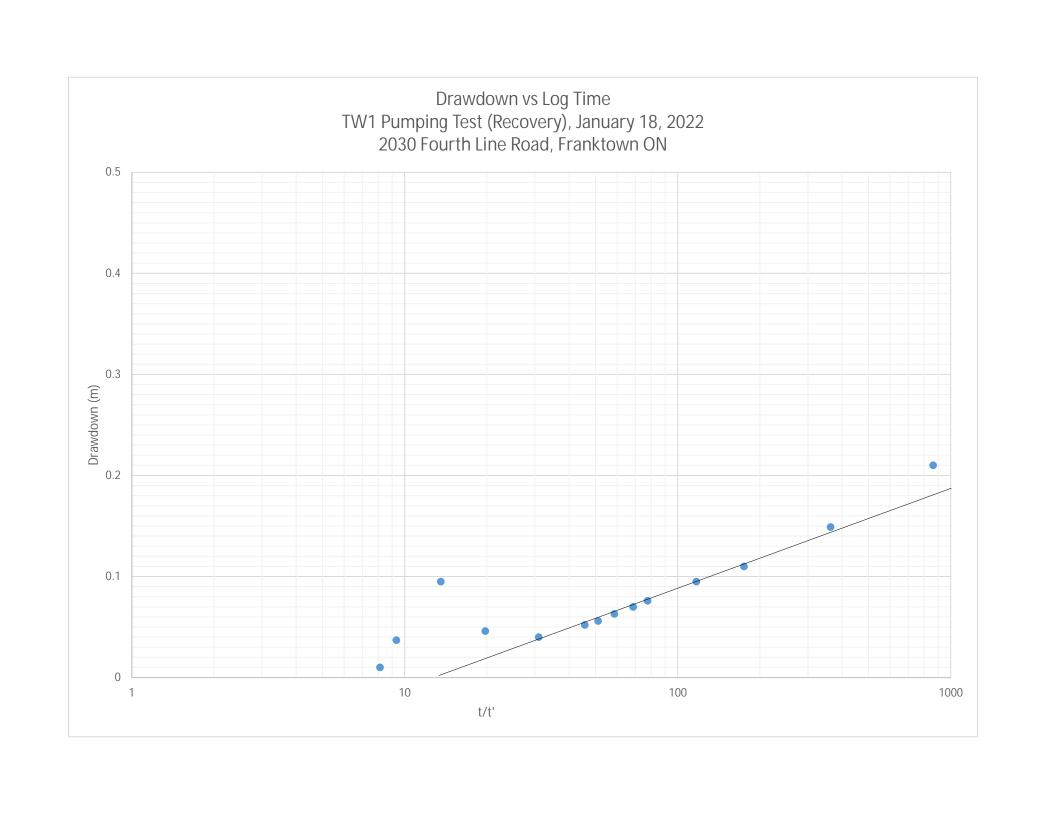
WELL_ID	COMPLETED	WELL DEPTH (m)	STATIC WATER LEVEL (m)	DEPTH TO BEDROCK (m) FINAL STATUS	USE1	PUMPING RATE	RECOM RATE
2410073	07-Aug-04	34.7	2	4.3 Water Supply	Domestic	44 LPM	30LPM
3500134	01-Apr-63	22.9	0	0.9 Water Supply	Domestic	10 GPM	5GPM
3500298	25-May-61	14.9	5.5	0 Water Supply	Domestic	7 GPM	7GPM
3500299	08-Mar-62	30.5	10.7	0.6 Water Supply	Domestic	5 GPM	5GPM
3500300	23-Jul-65	26.2	11.3	0.6 Water Supply	Domestic	15 GPM	5GPM
3500301	24-Apr-62	16.8	3.4	0.3 Water Supply	Domestic	10 GPM	10GPM
3500307	26-Nov-59	15.2	7.9	1.2 Water Supply	Domestic	5 GPM	5GPM
3500308	29-Oct-55	25.6	7.6	0.3 Water Supply	Domestic	13 GPM	GPM
3500309	24-Sep-56	21	4.6	0 Water Supply	Domestic	8 GPM	GPM
3500310	19-Mar-59	22.9	5.5	0.3 Water Supply	Domestic	30 GPM	5GPM
3500311	08-May-59	21	6.1	0.3 Water Supply	Domestic	8 GPM	8GPM
3500312	25-Jul-61	22.3	6.7	1.2 Water Supply	Domestic	10 GPM	10GPM
3500313	02-Sep-64	22.6	7.6	1.8 Water Supply	Domestic	8 GPM	8GPM
3500314	12-Aug-66	28	10.7	0 Water Supply	Livestock	10 GPM	5GPM
3500315	26-Mar-59	18.3	5.2	0.9 Water Supply	Domestic	30 GPM	10GPM
3500318	28-Oct-59	23.5	3.7	1.5 Water Supply	Domestic	7 GPM	5GPM
3500319	14-May-60	21.6	3.7	1.2 Water Supply	Domestic	25 GPM	5GPM
3500320	25-Jul-63	22.9	5.5	3.7 Water Supply	Domestic	10 GPM	10GPM
3502343	26-Apr-68	20.1	2.4	0.6 Water Supply	Domestic	8 GPM	5GPM
3502416	04-Mar-69	18.9	5.5	0.6 Water Supply	Commerical	3 GPM	3GPM
3502416	13-Jul-71	23.2	10.4	1.2 Water Supply	Domestic	4 GPM	4GPM
3502810	18-Aug-71	23.2	12.2	0.9 Water Supply	Domestic	15 GPM	5GPM
3502883	17-Jul-71	25.9	8.2	1.5 Water Supply	Domestic	15 GPM	5GPM
3503274	29-Sep-72	30.5	9.1	0.3 Water Supply	Domestic	15 GPM	15GPM
3503274	29-sep-72 27-Jun-73	27.4	10.7	0.3 Water Supply	Domestic	15 GPM	15GPM
3503383	27-Jun-73 06-Jul-73	27.4	6.1		Domestic	10 GPM	5GPM
				1.8 Water Supply			
3503664	15-Oct-73	25.9	5.5	0.3 Water Supply	Domestic	6 GPM	5GPM
3503718	10-May-74	27.4	0.3	0.3 Water Supply	Domestic	7 GPM	7GPM
3503763	15-Jul-74	21.9	9.4	1.2 Water Supply	Domestic	5 GPM	5GPM
3504268	14-Aug-75	25.9	10.1	0.6 Water Supply	Domestic	15 GPM	5GPM
3504368	21-May-76	33.5	6.1	0 Water Supply	Domestic	8 GPM	8GPM
3504536	26-Oct-76	23.2	5.5	0.6 Water Supply	Domestic	12 GPM	12GPM
3504537	27-Oct-76	29	5.5	0.3 Water Supply	Domestic	12 GPM	12GPM
3504815	23-Nov-77	27.7	1.2	0.6 Water Supply	Domestic	8 GPM	8GPM
3505131	04-Jul-78	27.4	10.7	0.3 Water Supply	Domestic	10 GPM	10GPM
3505618	01-Nov-79	27.4	5.5	0 Water Supply	Domestic	12 GPM	12GPM
3505792	15-Apr-80	22.9	6.1	0 Water Supply	Domestic	8 GPM	5GPM
3506595	04-Oct-83	24.4	12.2	1.5 Water Supply	Livestock	20 GPM	20GPM
3506603	10-Jan-83	25.6	10.7	0 Water Supply	Domestic	10 GPM	10GPM
3508675	07-Sep-88	23.2	7.6	0.6 Water Supply	Domestic	7 GPM	7GPM
3509074	26-Oct-89	24.4	13.7	0.6 Water Supply	Domestic	12 GPM	15GPM
3510822	03-Sep-93	27.4	12.5	1.8 Water Supply	Domestic	15 GPM	5GPM
3511553	06-Jul-95	29	7.6	0 Water Supply	Domestic	10 GPM	10GPM
3512519	22-Oct-98	30.5	9.4	3.4 Water Supply	Domestic	15 GPM	15GPM
3512844	29-Oct-99	29.3	4.3	0 Water Supply	Domestic	14 GPM	14GPM
3514514	12-Apr-04	21.3	6.2	0.9 Water Supply	Domestic	91 LPM	91LPM
3514558	19-May-04	30.5	8.8	0.9 Water Supply	Domestic	91 LPM	91LPM
3515533	20-Oct-06	39.6	0.5	0.6 Water Supply	Domestic	23 LPM	23LPM
7126066	11-Jun-06	24.4	3.2	0 Water Supply		67 LPM	50LPM
7131322	17-Sep-09	24.4	4.9	0 Water Supply	Domestic	20 GPM	20GPM
7148253	24-Jun-10	24.4	0	0 Water Supply	Domestic	14 GPM	15GPM
3508666	29-Feb-88	29	4.6	0.6 Water Supply	Domestic	14 GPM	14GPM
3508672	21-Sep-88	23.8	12.2	0.6 Water Supply	Domestic	12 GPM	12GPM
3508676	13-Sep-88	25.6	12.2	0.6 Water Supply	Domestic	20 GPM	20GPM
3509139	22-Nov-89	33.5	5.5	0 Water Supply	Domestic	12 GPM	12GPM
3510402	29-Jul-92	21.3	4.6	0 Water Supply	Domestic	18 GPM	18GPM
3510402	03-Apr-00	36.6	4.0		Domestic	30 GPM	30GPM
				0.3 Water Supply			
3513366	22-May-01	31.4	4.6	0.9 Water Supply	Domestic	7 GPM	7GPM
7169696	16-Aug-11	24.7	5.6	0 Water Supply	Domestic	20 GPM	20GPM
7186914	03-Aug-12	15.2	0	0 Observation Wells	Monitoring and Test Hole	е	
7228030	26-Aug-14	30.8	8.9	0 Water Supply	Domestic	20 GPM	20GPM
7228037	04-Sep-14	0	0.7	0 Abandoned-Other		. =	
7235413	03-Dec-14	24.4	0	0 Water Supply	Domestic	20 GPM	20GPM
7292087	19-Jul-17	36.6	0	0 Water Supply	Domestic	20 GPM	20GPM
1212001	17-Jul-17	30.0	U	o water supply	DOTTICSLIC	20 OI IVI	2001 101

HYDROGEOLOGICAL ASSESSMENT AND TERRAIN ANALYSIS GRIZZLY HOMES SUBDIVISION, BECKWITH, ONTARIO

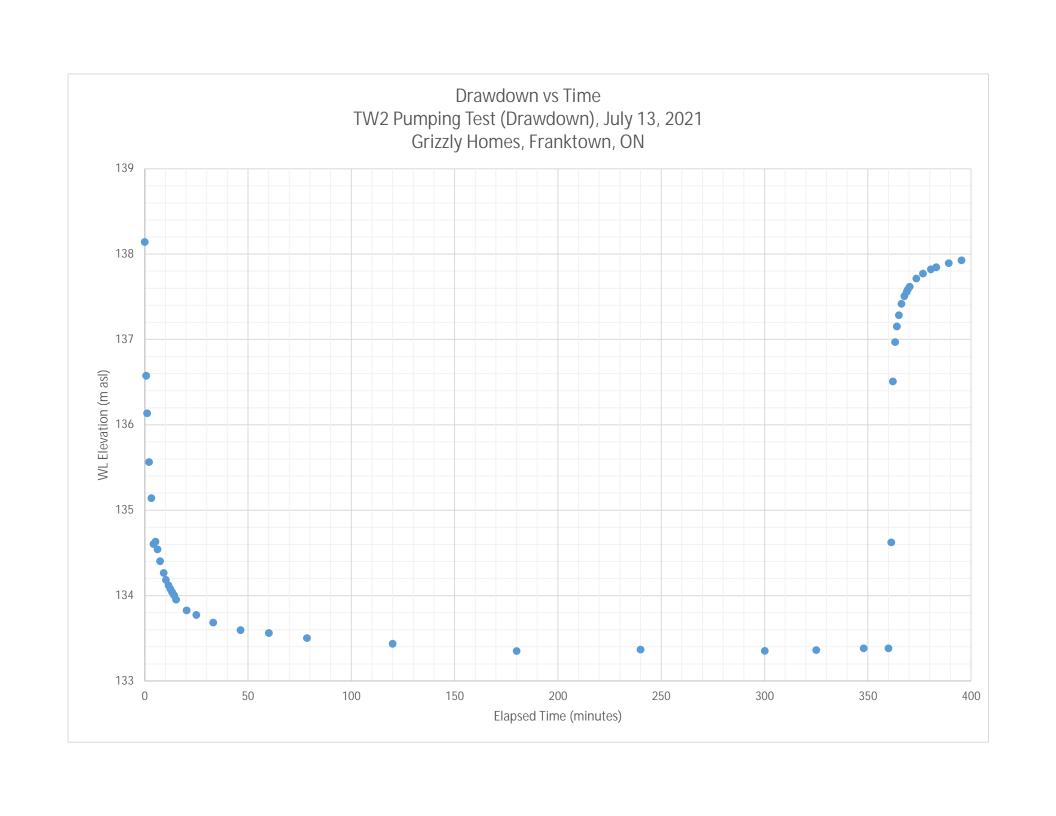


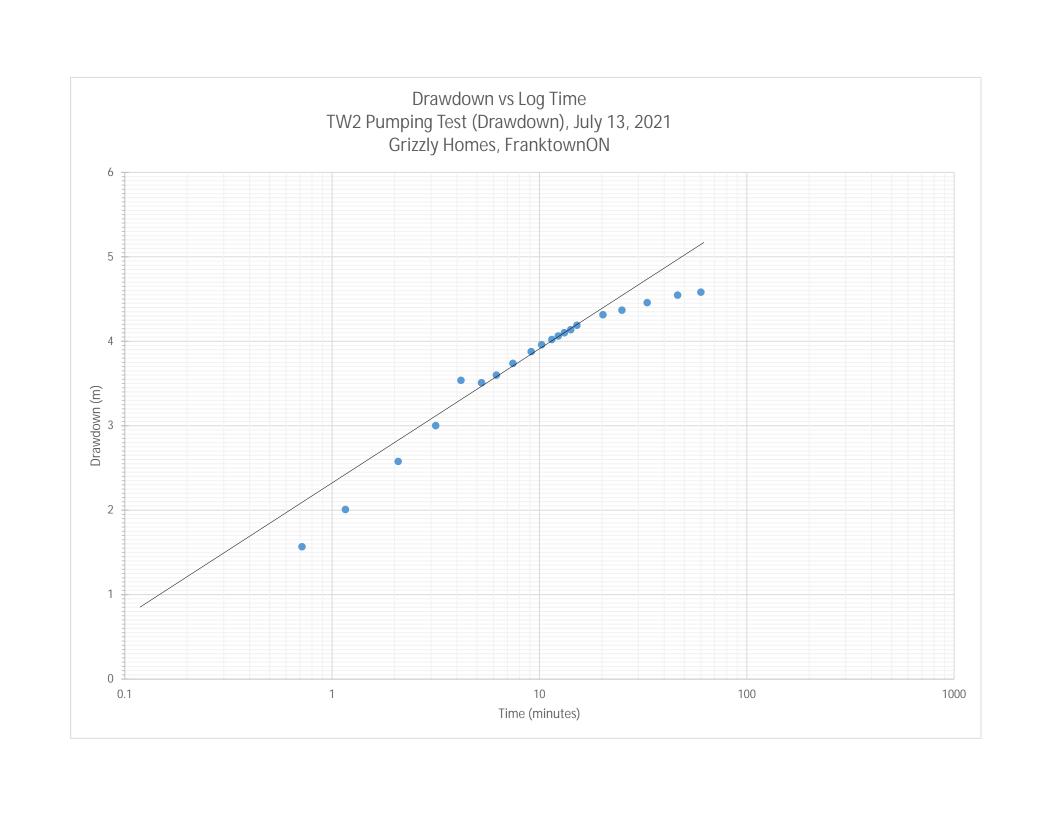

APPENDIX E: PUMPING TEST DATA

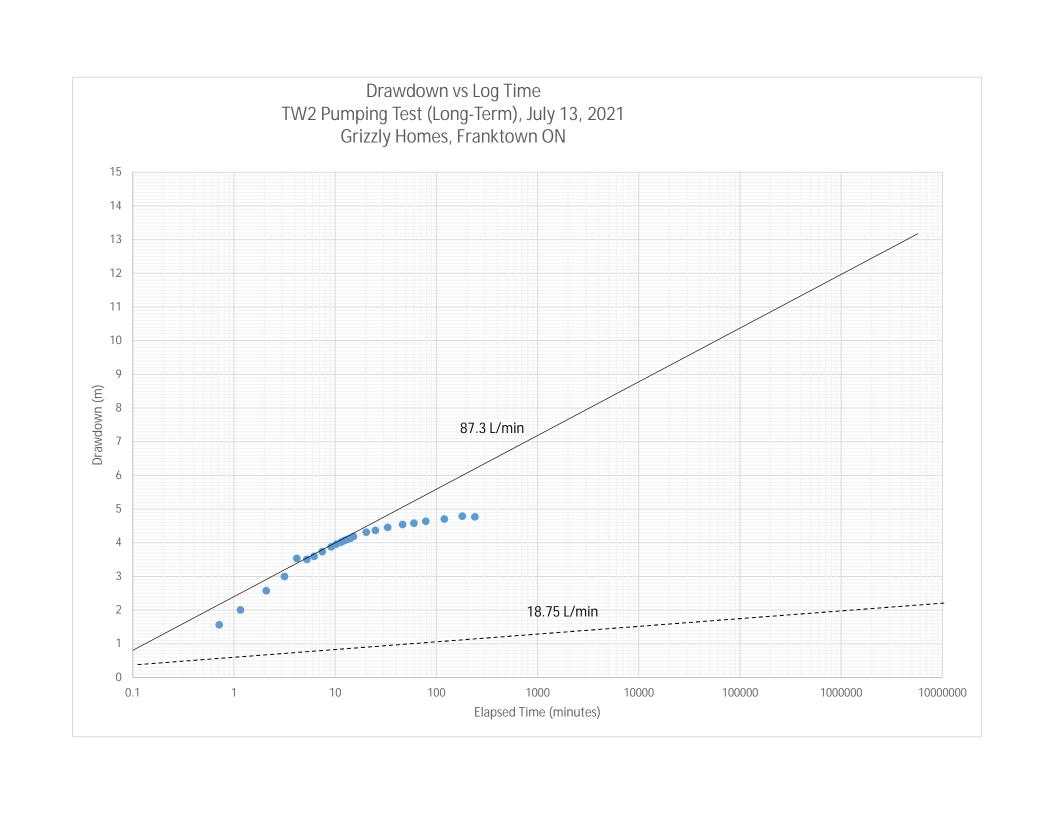

Summary of Water Level Data Pumping Test - TW1 - January 18, 2022

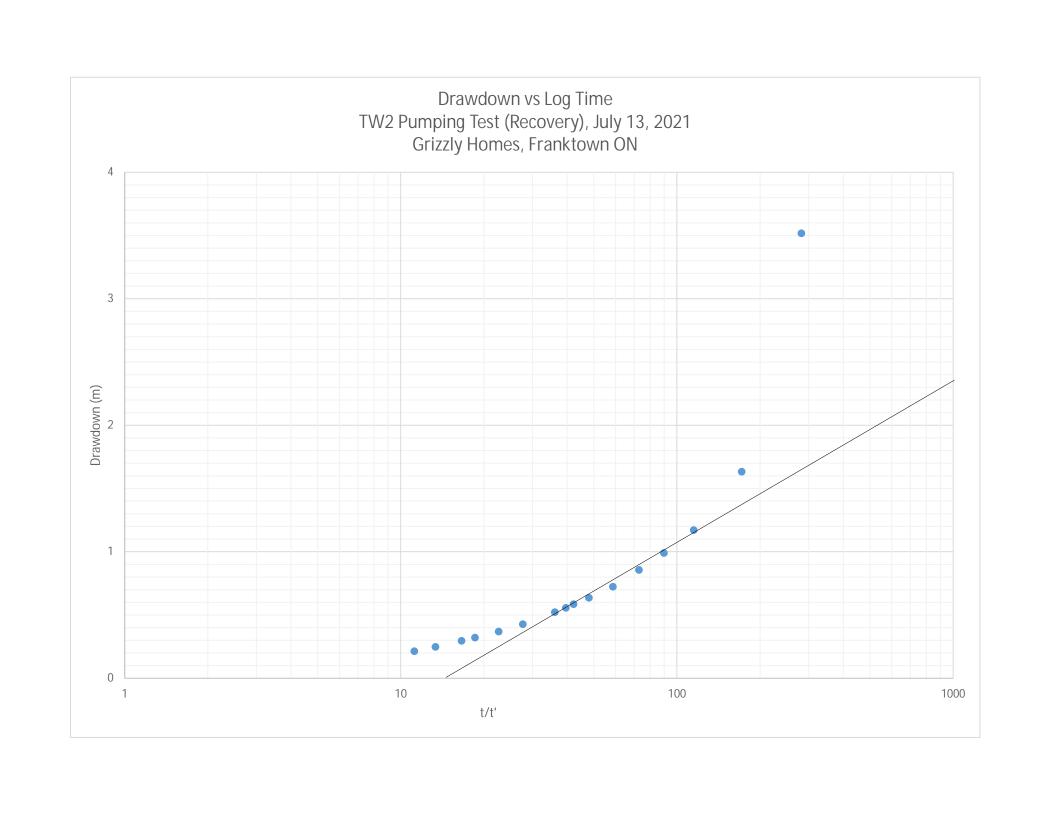

TOC Elevation (assumed) Static Water Level Static Water Elevation 95% Recovery 100 m AD (Above Datum) 3.78 m BTOC 96.22 m AD (Above Datum) 3.80155 m BTOC 96.19845 m AD (Above Datum)

Elapsed	Elapsed		Water	Water	Drawdown	
Time	Time	T/T'	Level (m	Level (m	(m)	Notes
(minutes)	(Recovery)		BTOC)	ASL)	(111)	
0			3.78	96.22	0	Pumping rate = 21 I/min
1.18			3.96	96.04	0.18	
2.47			3.985	96.015	0.205	
3.35			3.975	96.025	0.195	
4.08			3.963	96.037	0.183	
5.33			3.96	96.04	0.18	
6.2			4.015	95.985	0.235	
7.27			4.06	95.94	0.28	
8.08			4.096	95.904	0.316	
9.08			3.995	96.005	0.215	
10.33			3.976	96.024	0.196	
17.33			4.12	95.88	0.34	
23.25			4.126	95.874	0.346	
38.17			4.13	95.87	0.35	
50.42			4.154	95.846	0.374	
65.5			4.211	95.789	0.431	
91.25			4.165	95.835	0.385	
115.92			4.16	95.843	0.377	
124.42			4.156	95.844	0.376	
151.4			4.21	95.79	0.43	
180			4.161	95.839	0.381	
211.6			4.155	95.845	0.375	
226.5			4.198	95.802	0.418	
300			4.152	95.848	0.372	
346.67			4.211	95.789	0.431	
360			4.18	95.82	0.4	
362.42	0.42	862.9048	3.99	96.01	0.21	Pump off at 362 min
363	1	363	3.929	96.071	0.149	
364.08	2.08	175.0385	3.89	96.11	0.11	
365.12	3.12	117.0256	3.875	96.125	0.095	
366.73	4.73	77.53277	3.856	96.144	0.076	
367.35	5.35	68.66355	3.85	96.15	0.07	
368.28	6.28	58.64331	3.843	96.157	0.063	
369.23	7.23	51.06916	3.836	96.164	0.056	
370.1	8.1	45.69136	3.832	96.168	0.052	
374.08	12.08	30.96689	3.82	96.18	0.04	
381.33	19.33	19.72737	3.826	96.174	0.046	
390.83	28.83	13.55636	3.875	96.125	0.095	
405.5	43.5	9.321839	3.817	96.183	0.037	
412.83	50.83	8.121778	3.79	96.21	0.01	

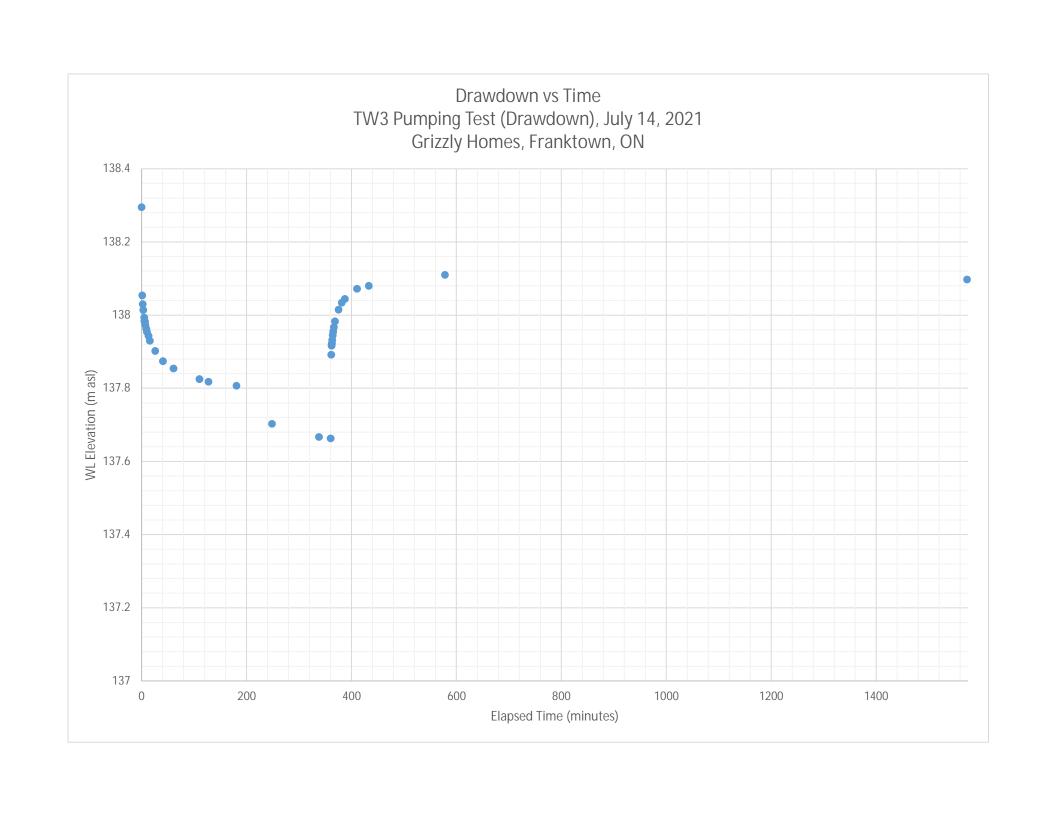


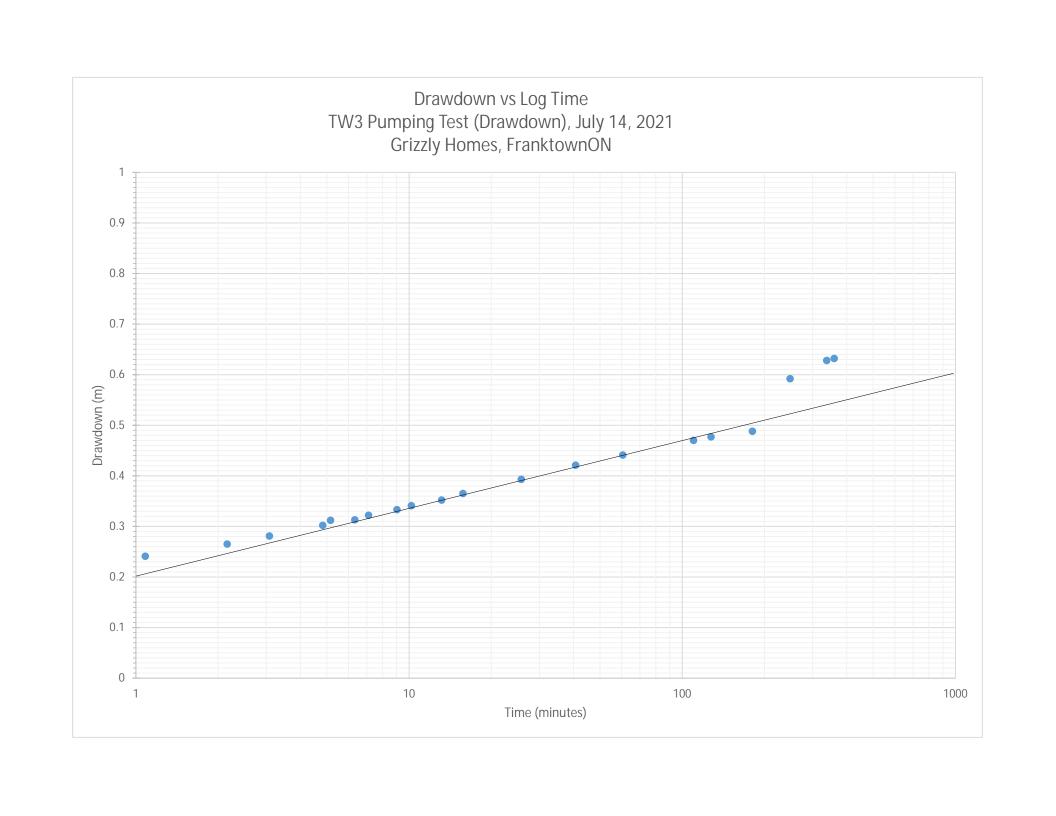


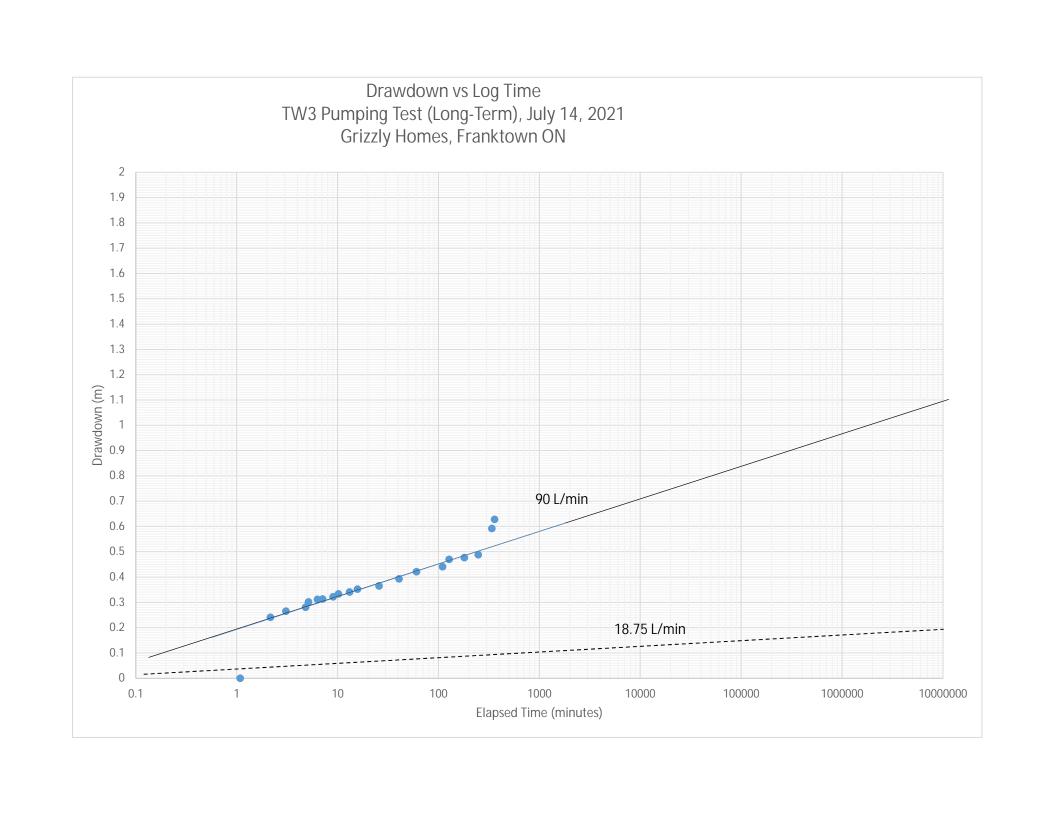

Summary of Water Level Data Pumping Test - TW2 - July 13, 2021

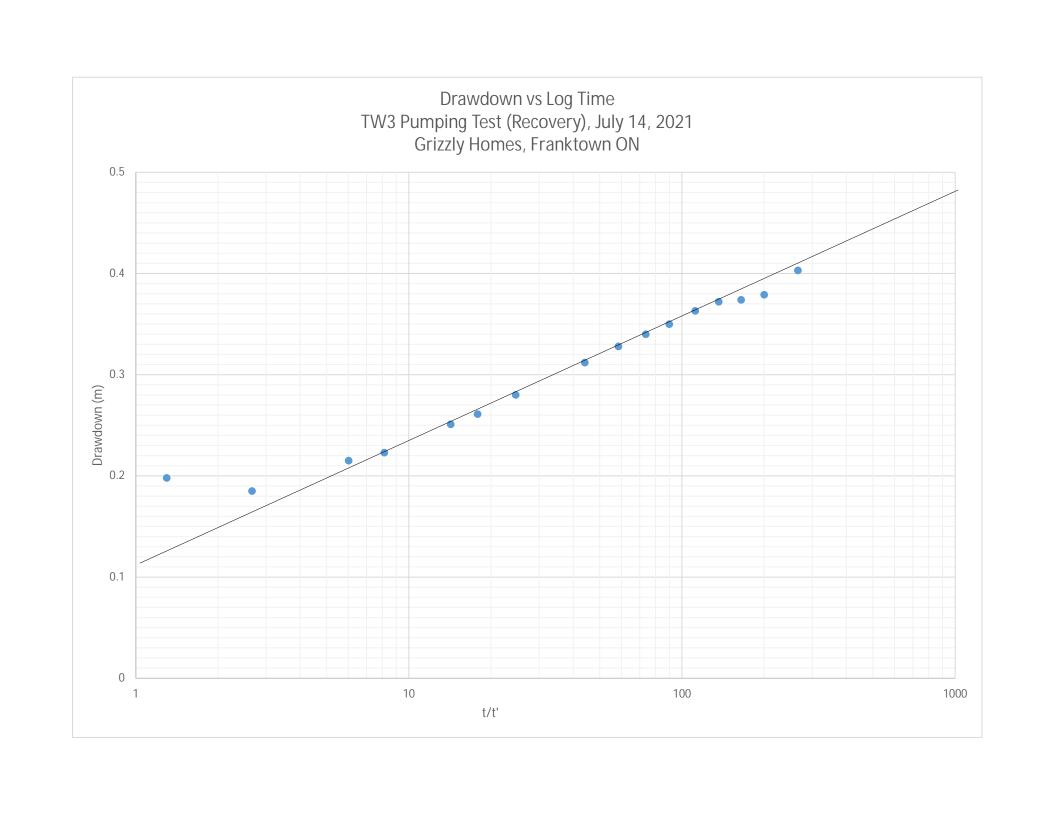

TOC Elevation Static Water Level Stick up (m) Static Water Elevation 95% Recovery 142.904 m ASL 4.762 m BTOC 0.626 138.142 m ASL 5.00155 m BTOC 137.90245 m ASL

Elapsed	Elapsed		Water	Water		
Time	Time	T/T'	Level (m	Level (m	Drawdown	Notes
(minutes)	(Recovery)	1/1	BTOC)	ASL)	(m)	Notes
0	(Recovery)		4.762	138.142	0	Pumping rate = 87.3 L/min
0.716			6.329	136.575	1.567	rumping rate = 07.5 L/min
1.16			6.769	136.375	2.007	
				135.565		
2.083 3.16			7.339	135.565	2.577 3.001	
4.183					3.537	
			8.299	134.605		
5.26			8.271	134.633	3.509	
6.2 7.45			8.361	134.543 134.404	3.599	
9.13			8.5	134.404	3.738 3.877	
10.25			8.639			
			8.721	134.183	3.959	
11.48			8.782	134.122	4.02	
12.33			8.824	134.08	4.062	
13.2			8.863	134.041	4.101	
14.16			8.899	134.005	4.137	
15.16			8.951	133.953	4.189	
20.26			9.076	133.828	4.314	
25			9.13	133.774	4.368	
33.11			9.219	133.685	4.457	
46.41			9.308	133.596	4.546	
60.11			9.343	133.561	4.581	Sample TW2-1 @ 9:30 am
78.5			9.402	133.502	4.64	
120			9.467	133.437	4.705	
180			9.553	133.351	4.791	
240			9.536	133.368	4.774	
300.08			9.551	133.353	4.789	
325.03			9.541	133.363	4.779	Sample TW2-2 @ 2:05 pm
348			9.52	133.384	4.758	
360			9.52	133.384	4.758	
361.28	1.28	282.25	8.28	134.624	3.518	Pump off @ 361 min
362.11	2.11	171.6161	6.395	136.509	1.633	
363.16	3.16	114.9241	5.933	136.971	1.171	
364.06	4.06	89.66995	5.752	137.152	0.99	
365.01	5.01	72.85629	5.619	137.285	0.857	
366.25	6.25	58.6	5.486	137.418	0.724	
367.66	7.66	47.99739	5.398	137.506	0.636	
368.73	8.73	42.23711	5.348	137.556	0.586	
369.33	9.33	39.58521	5.319	137.585	0.557	
370.25	10.25	36.12195	5.285	137.619	0.523	
373.5	13.5	27.66667	5.19	137.714	0.428	
376.66	16.66	22.60864	5.131	137.773	0.369	
380.5	20.5	18.56098	5.083	137.821	0.321	
383.08	23.08	16.59792	5.058	137.846	0.296	
389.16	29.16	13.34568	5.01	137.894	0.248	
395.33	35.33	11.18964	4.976	137.928	0.214	

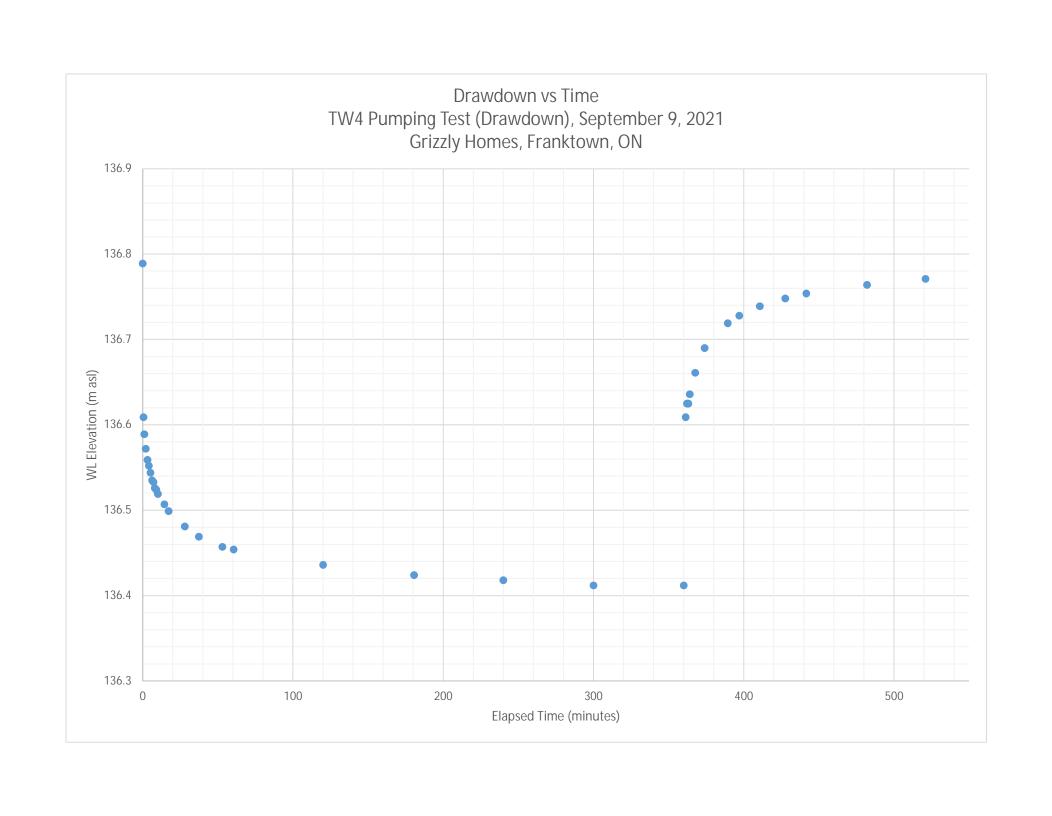


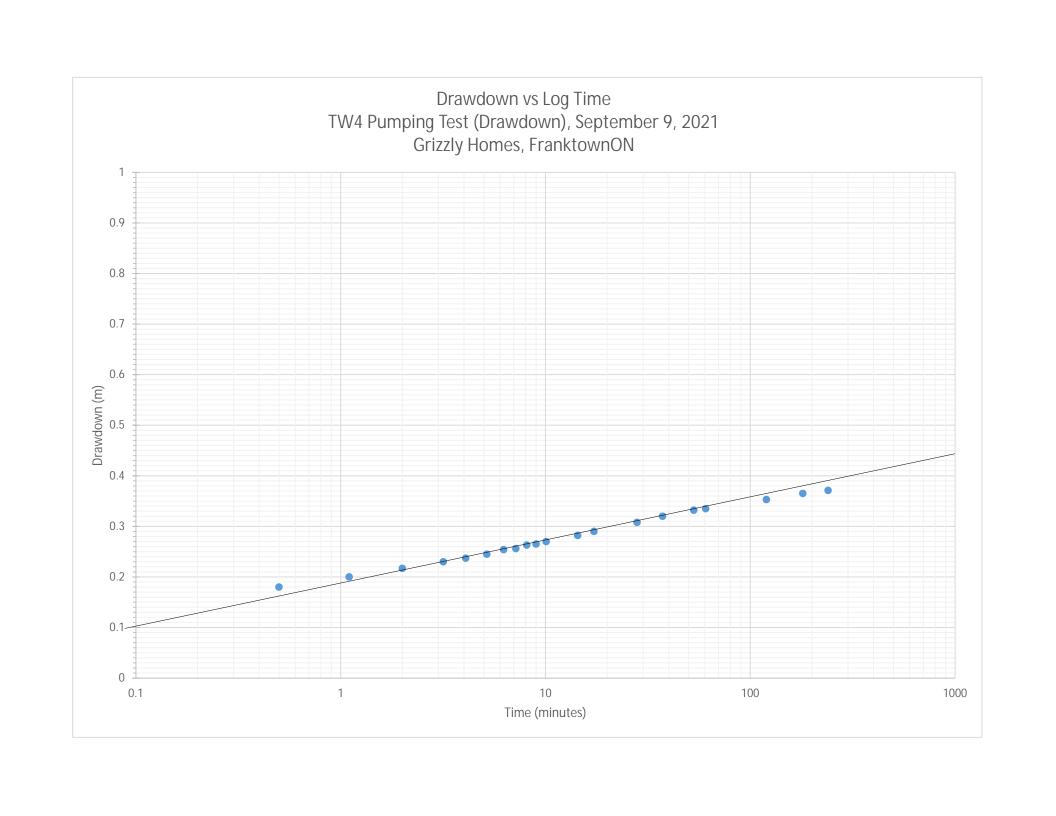


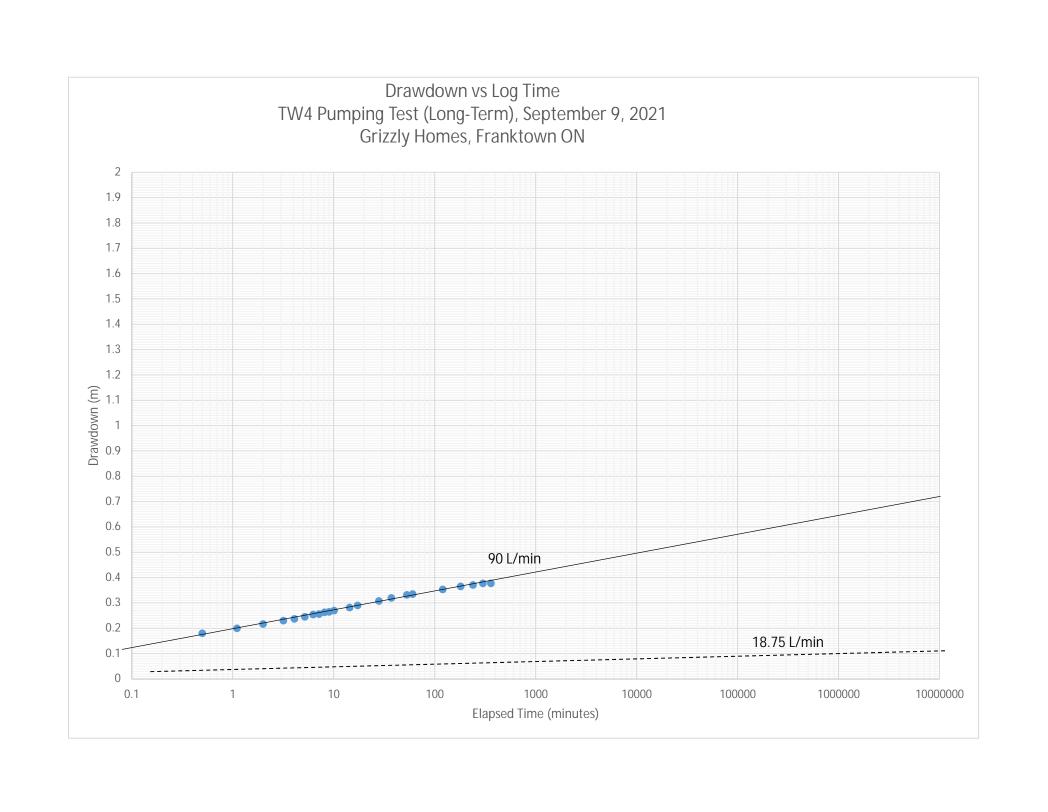

Summary of Water Level Data Pumping Test - TW3 - July 14, 2021

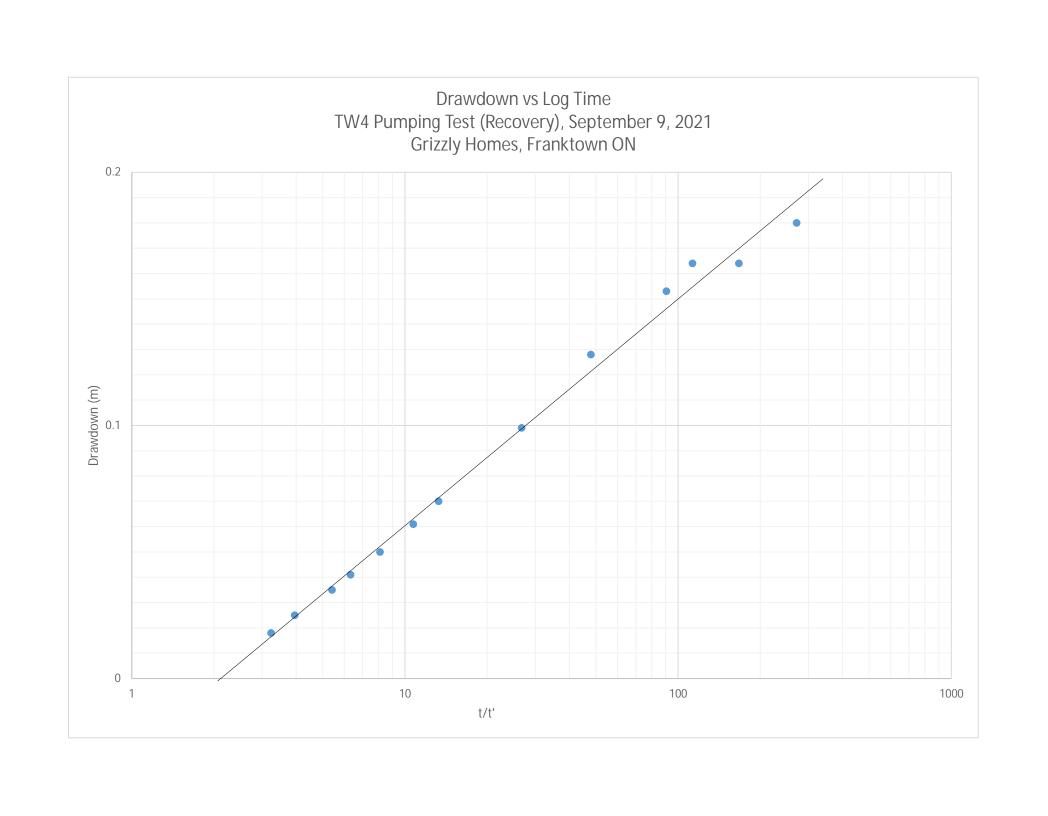

TOC Elevation Static Water Level Stick up Static Water Elevation 95% Recovery 147.776 m ASL 9.481 m BTOC 0.637 m 138.295 m ASL 9.5126 m BTOC 138.2634 m ASL

Elapsed	Elapsed		Water	Water	Drawdown	
Time	Time	T/T'	Level (m	Level (m	(m)	Notes
(minutes)	(Recovery)		BTOC)	ASL)	(111)	
0			9.481	138.295	0	Pump on @ 8:10
1.083			9.722	138.054	0.241	90 L/min
2.16			9.746	138.03	0.265	
3.083			9.762	138.014	0.281	
4.83			9.783	137.993	0.302	
5.16			9.793	137.983	0.312	
6.33			9.794	137.982	0.313	
7.11			9.803	137.973	0.322	
9.03			9.814	137.962	0.333	
10.2			9.822	137.954	0.341	
13.16			9.833	137.943	0.352	
15.75			9.846	137.93	0.365	
25.76			9.874	137.902	0.393	
40.71			9.902	137.874	0.421	
60.61			9.922	137.854	0.441	Sample 3-1 @ 9:07 (57 min)
110.01			9.951	137.825	0.47	
127.53			9.958	137.818	0.477	
180.66			9.969	137.807	0.488	
248.26			10.073	137.703	0.592	
338			10.109	137.667	0.628	Sample 3-2 @ 1:55 (345 min)
360			10.113	137.663	0.632	
361.36	1.36	265.7059	9.884	137.892	0.403	Pump off @ 361 min
361.81	1.81	199.895	9.86	137.916	0.379	
362.2	2.2	164.6364	9.855	137.921	0.374	
362.66	2.66	136.3383	9.853	137.923	0.372	
363.25	3.25	111.7692	9.844	137.932	0.363	
364.05	4.05	89.88889	9.831	137.945	0.35	
364.95	4.95	73.72727	9.821	137.955	0.34	
366.26	6.26	58.50799	9.809	137.967	0.328	
368.36	8.36	44.0622	9.793	137.983	0.312	
375.25	15.25	24.60656	9.761	138.015	0.28	
381.36	21.36	17.85393	9.742	138.034	0.261	
387.2	27.2	14.23529	9.732	138.044	0.251	
410.5	50.5	8.128713	9.704	138.072	0.223	
432.88	71.88	6.022259	9.696	138.08	0.215	
578	217	2.663594	9.666	138.11	0.185	
1573	1212	1.297855	9.679	138.097	0.198	

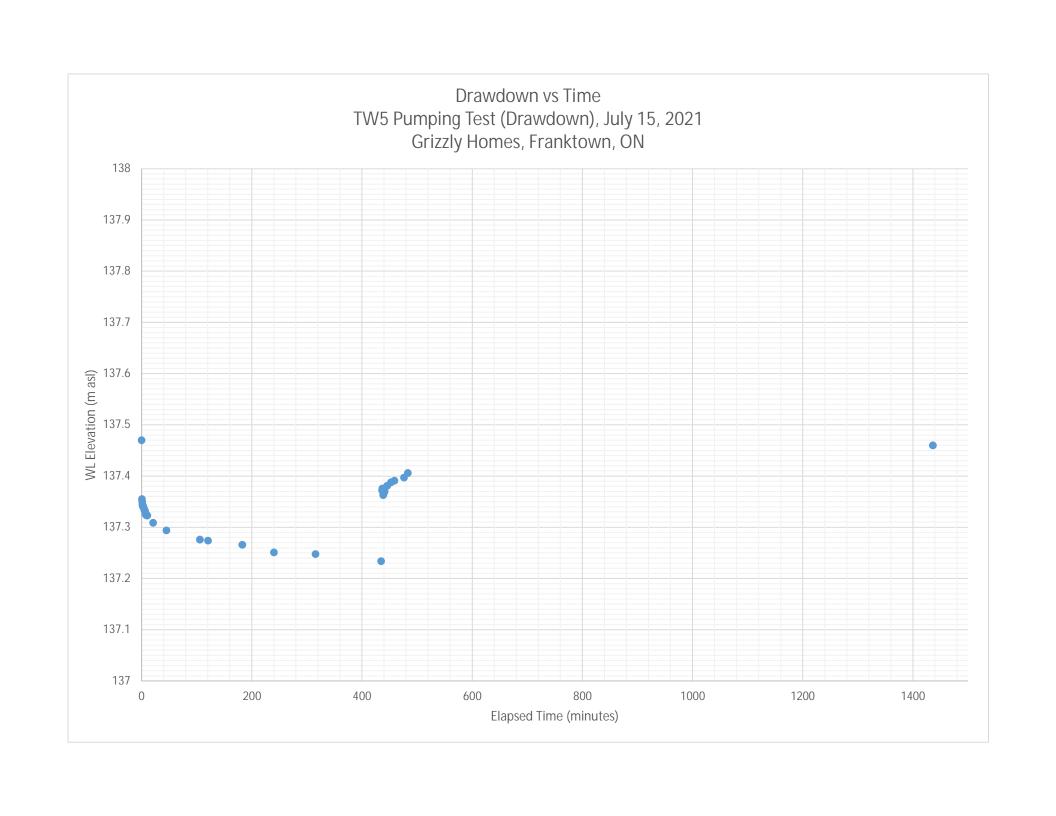


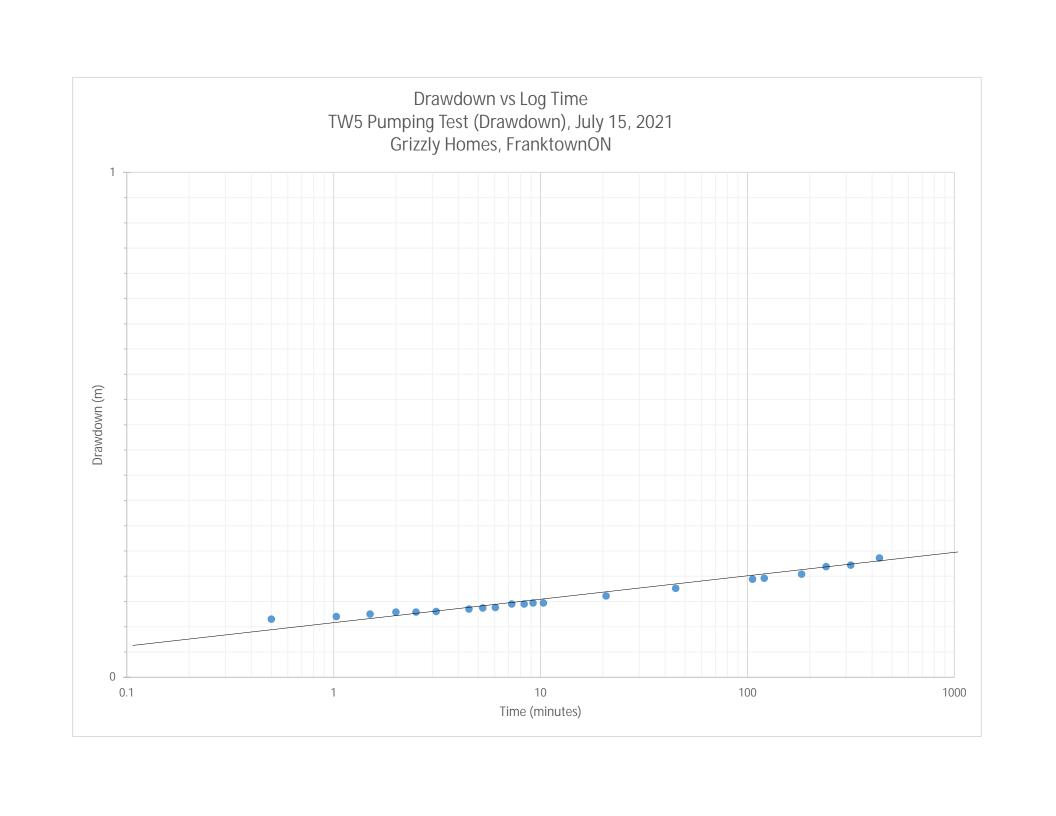


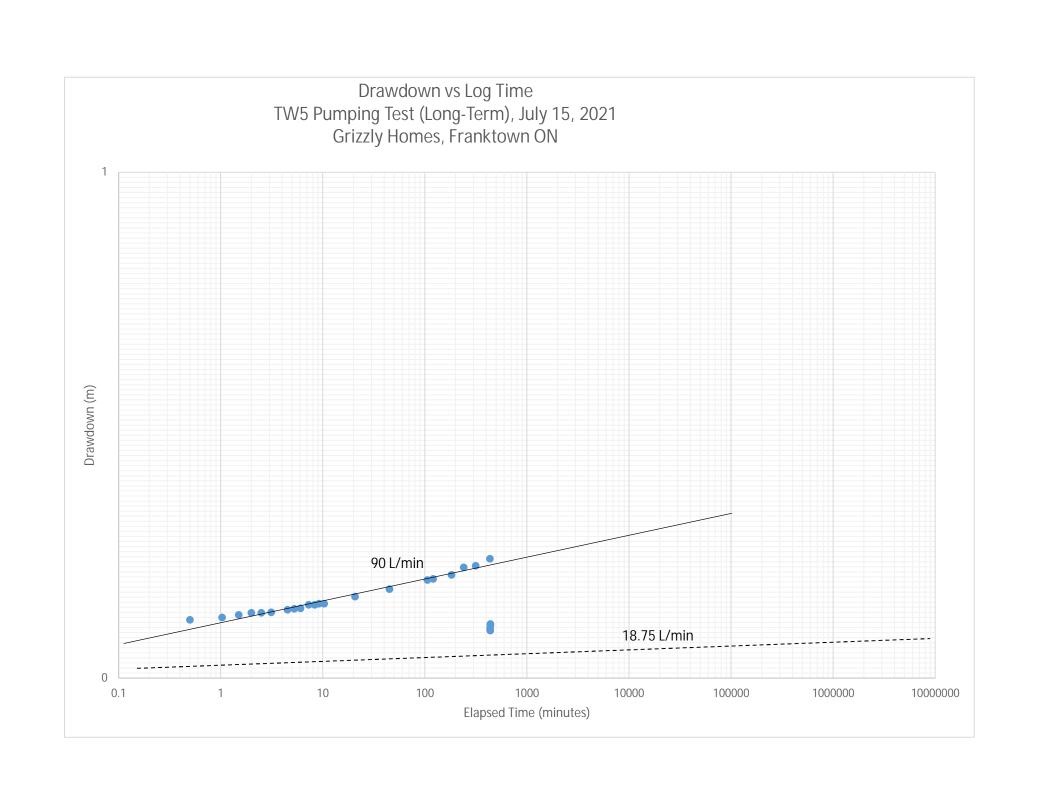

Summary of Water Level Data Pumping Test - TW4- September 9, 2021

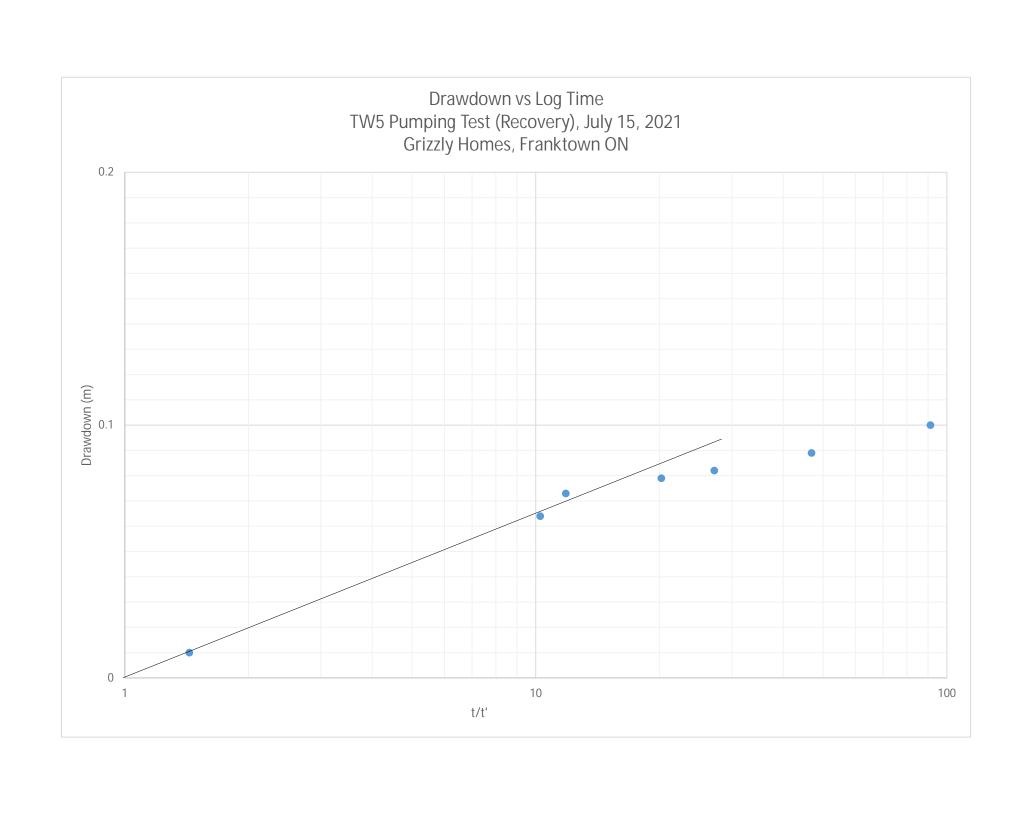

TOC Elevation Static Water Level Stick up Static Water Elevation 95% Recovery 148.299 m ASL 11.51 m BTOC 0.648 m 136.789 m ASL 11.529 m BTOC 136.77015 m ASL

Elapsed Time (minutes) Elapsed (Recovery) T/T' Water Level (m BTOC) Water Level (m ASL) Drawdown (m) Notes 0 11.51 136.789 0 0.5 11.69 136.609 0.18 Pumping rate = 90 L/min 1.1 11.71 136.589 0.2 2 11.727 136.572 0.217 3.17 11.74 136.559 0.23 4.08 11.747 136.552 0.237 5.17 11.755 136.544 0.245 6.25 11.764 136.535 0.254 7.17 11.766 136.533 0.256 8.1 11.773 136.524 0.265 9 11.775 136.524 0.265 10.08 11.78 136.519 0.27 14.37 11.792 136.507 0.282 17.25 11.8 136.499 0.29
(minutes) (Recovery) BTOC) ASL) (m) 0 11.51 136.789 0 0.5 11.69 136.609 0.18 Pumping rate = 90 L/min 1.1 11.71 136.589 0.2 2 11.727 136.572 0.217 3.17 11.74 136.559 0.23 4.08 11.747 136.552 0.237 5.17 11.755 136.544 0.245 6.25 11.764 136.535 0.254 7.17 11.766 136.533 0.256 8.1 11.773 136.526 0.263 9 11.775 136.524 0.265 10.08 11.78 136.519 0.27 14.37 11.792 136.507 0.282 17.25 11.8 136.499 0.29
0 11.51 136.789 0 0.5 11.69 136.609 0.18 Pumping rate = 90 L/min 1.1 11.71 136.589 0.2 2 11.727 136.572 0.217 3.17 11.74 136.559 0.23 4.08 11.747 136.552 0.237 5.17 11.755 136.544 0.245 6.25 11.764 136.535 0.254 7.17 11.766 136.533 0.256 8.1 11.773 136.526 0.263 9 11.775 136.524 0.265 10.08 11.78 136.519 0.27 14.37 11.792 136.507 0.282 17.25 11.8 136.499 0.29
0.5 11.69 136.609 0.18 Pumping rate = 90 L/min 1.1 11.71 136.589 0.2 2 11.727 136.572 0.217 3.17 11.74 136.559 0.23 4.08 11.747 136.552 0.237 5.17 11.755 136.544 0.245 6.25 11.764 136.535 0.254 7.17 11.766 136.533 0.256 8.1 11.773 136.526 0.263 9 11.775 136.524 0.265 10.08 11.78 136.507 0.282 17.25 11.8 136.499 0.29
1.1 11.71 136.589 0.2 2 11.727 136.572 0.217 3.17 11.74 136.559 0.23 4.08 11.747 136.552 0.237 5.17 11.755 136.544 0.245 6.25 11.764 136.535 0.254 7.17 11.766 136.533 0.256 8.1 11.773 136.526 0.263 9 11.775 136.524 0.265 10.08 11.78 136.507 0.282 17.25 11.8 136.499 0.29
2 11.727 136.572 0.217 3.17 11.74 136.559 0.23 4.08 11.747 136.552 0.237 5.17 11.755 136.544 0.245 6.25 11.764 136.535 0.254 7.17 11.766 136.533 0.256 8.1 11.773 136.526 0.263 9 11.775 136.524 0.265 10.08 11.78 136.519 0.27 14.37 11.792 136.507 0.282 17.25 11.8 136.499 0.29
3.17 11.74 136.559 0.23 4.08 11.747 136.552 0.237 5.17 11.755 136.544 0.245 6.25 11.764 136.535 0.254 7.17 11.766 136.533 0.256 8.1 11.773 136.526 0.263 9 11.775 136.524 0.265 10.08 11.78 136.519 0.27 14.37 11.792 136.507 0.282 17.25 11.8 136.499 0.29
4.08 11.747 136.552 0.237 5.17 11.755 136.544 0.245 6.25 11.764 136.535 0.254 7.17 11.766 136.533 0.256 8.1 11.773 136.526 0.263 9 11.775 136.524 0.265 10.08 11.78 136.519 0.27 14.37 11.792 136.507 0.282 17.25 11.8 136.499 0.29
5.17 11.755 136.544 0.245 6.25 11.764 136.535 0.254 7.17 11.766 136.533 0.256 8.1 11.773 136.526 0.263 9 11.775 136.524 0.265 10.08 11.78 136.519 0.27 14.37 11.792 136.507 0.282 17.25 11.8 136.499 0.29
6.25 11.764 136.535 0.254 7.17 11.766 136.533 0.256 8.1 11.773 136.526 0.263 9 11.775 136.524 0.265 10.08 11.78 136.519 0.27 14.37 11.792 136.507 0.282 17.25 11.8 136.499 0.29
8.1 11.773 136.526 0.263 9 11.775 136.524 0.265 10.08 11.78 136.519 0.27 14.37 11.792 136.507 0.282 17.25 11.8 136.499 0.29
9 11.775 136.524 0.265 10.08 11.78 136.519 0.27 14.37 11.792 136.507 0.282 17.25 11.8 136.499 0.29
9 11.775 136.524 0.265 10.08 11.78 136.519 0.27 14.37 11.792 136.507 0.282 17.25 11.8 136.499 0.29
14.37 11.792 136.507 0.282 17.25 11.8 136.499 0.29
17.25 11.8 136.499 0.29
14 040 407 127
28 11.818 136.481 0.308
37.33 11.83 136.469 0.32
53 11.842 136.457 0.332
60.58 11.845 136.454 0.335
120 11.863 136.436 0.353
180.58 11.875 136.424 0.365
240 11.881 136.418 0.371
300 11.887 136.412 0.377
360 11.887 136.412 0.377
361.33 1.33 271.6767 11.69 136.609 0.18
362.17 2.17 166.8986 11.674 136.625 0.164
363.22 3.22 112.8012 11.674 136.625 0.164
364.02 4.02 90.55224 11.663 136.636 0.153
367.67 7.67 47.93611 11.638 136.661 0.128
374 14 26.71429 11.609 136.69 0.099
389.33 29.33 13.27412 11.58 136.719 0.07
397 37 10.72973 11.571 136.728 0.061
410.67 50.67 8.104796 11.56 136.739 0.05
427.63 67.63 6.323081 11.551 136.748 0.041
441.67 81.67 5.407983 11.545 136.754 0.035
482 122 3.95082 11.535 136.764 0.025
521 161 3.236025 11.528 136.771 0.018






Summary of Water Level Data Pumping Test - TW5 - July 15, 2021


TOC Elevation Static Water Level Stick Up Static Water Elevation 95% Recovery 148.916 m ASL 11.446 m BTOC 0.548 m 137.47 m ASL 11.4578 m BTOC 137.4582 m ASL

Elapsed	Elapsed		Water	Water	Drawdown	
Time	Time	T/T'	Level (m	Level (m	(m)	Notes
(minutes)	(Recovery)		BTOC)	ASL)	(111)	
0			11.446	137.47	0	Pumping rate = 90 L/min
0.5			11.561	137.355	0.115	
1.03			11.566	137.35	0.12	
1.5			11.571	137.345	0.125	
2			11.575	137.341	0.129	
2.5			11.575	137.341	0.129	
3.13			11.576	137.34	0.13	
4.51			11.581	137.335	0.135	
5.26			11.583	137.333	0.137	
6.05			11.584	137.332	0.138	
7.26			11.591	137.325	0.145	
8.33			11.591	137.325	0.145	
9.2			11.593	137.323	0.147	
10.33			11.593	137.323	0.147	
20.73			11.607	137.309	0.161	
45			11.622	137.294	0.176	Sample TW5-1 @ 8:45 am (50 min)
105.83			11.64	137.276	0.194	
120.6			11.64	137.274	0.196	
182.66			11.65	137.266	0.204	
240			11.665	137.251	0.219	
315.5			11.668	137.248	0.222	Sample TW5-2 @ 1:15 (320 min)
434.61			11.682	137.234	0.236	
436.33			11.544	137.372	0.098	Pump off at 436 min
437	1	437	11.54	137.376	0.094	
438.41	2.41	181.9129	11.553	137.363	0.107	
439.38	3.38	129.9941	11.55	137.366	0.104	
440.83	4.83	91.26915	11.546	137.37	0.1	
445.5	9.5	46.89474	11.535	137.381	0.089	
452.66	16.66	27.17047	11.528	137.388	0.082	
458.7	22.7	20.20705	11.525	137.391	0.079	
476.25	40.25	11.8323	11.519	137.397	0.073	
483.13	47.13	10.25101	11.51	137.406	0.064	
1436	1000	1.436	11.456	137.46	0.01	

HYDROGEOLOGICAL ASSESSMENT AND TERRAIN ANALYSIS GRIZZLY HOMES SUBDIVISION, BECKWITH, ONTARIO

APPENDIX F: LABORATORY CERTIFICATES OF ANALYSIS

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

McIntosh Perry Consulting Eng. (Carp)

115 Walgreen Rd. Carp, ON K0A 1L0 Attn: Monica Black

Client PO: Grizzly Homes

Project: 22-0256 Custody: 15553 Report Date: 25-Jan-2022 Order Date: 19-Jan-2022

Order #: 2204155

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 2204155-01
 TW1-1

 2204155-02
 TW1-2

Approved By:

Mark Froto

Mark Foto, M.Sc. Lab Supervisor

Report Date: 25-Jan-2022 Order Date: 19-Jan-2022

Project Description: 22-0256

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)
Client PO: Grizzly Homes

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Alkalinity, total to pH 4.5	EPA 310.1 - Titration to pH 4.5	19-Jan-22	19-Jan-22
Ammonia, as N	EPA 351.2 - Auto Colour	24-Jan-22	24-Jan-22
Anions	EPA 300.1 - IC	19-Jan-22	19-Jan-22
Colour	SM2120 - Spectrophotometric	19-Jan-22	19-Jan-22
Conductivity	EPA 9050A- probe @25 °C	19-Jan-22	19-Jan-22
Dissolved Organic Carbon	MOE E3247B - Combustion IR, filtration	19-Jan-22	19-Jan-22
E. coli	MOE E3407	19-Jan-22	19-Jan-22
Fecal Coliform	SM 9222D	19-Jan-22	19-Jan-22
Heterotrophic Plate Count	SM 9215C	19-Jan-22	21-Jan-22
Metals, ICP-MS	EPA 200.8 - ICP-MS	20-Jan-22	20-Jan-22
pН	EPA 150.1 - pH probe @25 °C	19-Jan-22	19-Jan-22
Phenolics	EPA 420.2 - Auto Colour, 4AAP	20-Jan-22	20-Jan-22
Hardness	Hardness as CaCO3	20-Jan-22	20-Jan-22
Sulphide	SM 4500SE - Colourimetric	24-Jan-22	24-Jan-22
Tannin/Lignin	SM 5550B - Colourimetric	24-Jan-22	24-Jan-22
Total Coliform	MOE E3407	19-Jan-22	19-Jan-22
Total Dissolved Solids	SM 2540C - gravimetric, filtration	20-Jan-22	21-Jan-22
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	21-Jan-22	21-Jan-22
Turbidity	SM 2130B - Turbidity meter	19-Jan-22	19-Jan-22

Order #: 2204155

Report Date: 25-Jan-2022

Order Date: 19-Jan-2022

Client: McIntosh Perry Consulting Eng. (Carp) Client PO: Grizzly Homes Project Description: 22-0256

	Client ID: Sample Date:	TW1-1 18-Jan-22 09:52	TW1-2 18-Jan-22 14:22	- -	
	Sample ID:	2204155-01	2204155-02	-	-
Microbiological Parameters	MDL/Units	Drinking Water	Drinking Water	-	-
E. coli	1 CFU/100mL	ND [2]	ND	_	_
Fecal Coliforms	1 CFU/100mL	ND [2]	ND	_	_
Total Coliforms	1 CFU/100mL	ND [2]	ND	_	-
Heterotrophic Plate Count	10 CFU/mL	170	70	_	-
General Inorganics		170	70		-
Alkalinity, total	5 mg/L	254	252	_	_
Ammonia as N	0.01 mg/L	0.04	0.05	_	_
Dissolved Organic Carbon	0.5 mg/L	2.3	2.3	-	_
Colour	2 TCU	17	16	-	-
Conductivity	5 uS/cm	546	528	-	_
Hardness	mg/L	255	256	-	-
pН	0.1 pH Units	7.5	7.5	-	-
Phenolics	0.001 mg/L	<0.001	<0.001	_	-
Total Dissolved Solids	10 mg/L	288	300	-	-
Sulphide	0.02 mg/L	<0.02	<0.02	-	-
Tannin & Lignin	0.1 mg/L	<0.1	<0.1	-	-
Total Kjeldahl Nitrogen	0.1 mg/L	0.1	<0.1	-	-
Turbidity	0.1 NTU	7.4	5.7	-	-
Anions	'		+	•	
Chloride	1 mg/L	13	12	-	-
Fluoride	0.1 mg/L	0.3	0.3	-	-
Nitrate as N	0.1 mg/L	<0.1	<0.1	-	-
Nitrite as N	0.05 mg/L	<0.05	<0.05	-	-
Sulphate	1 mg/L	15	14	-	-
Metals			•	•	
Calcium	0.1 mg/L	71.0	70.8	-	-
Iron	0.1 mg/L	0.9	0.9	-	-
Magnesium	0.2 mg/L	18.9	19.3	-	-
Manganese	0.005 mg/L	0.078	0.078	-	-
Potassium	0.1 mg/L	2.5	2.5	-	-
Sodium	0.2 mg/L	5.6	5.5	-	-

Report Date: 25-Jan-2022

Order Date: 19-Jan-2022 **Project Description: 22-0256**

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Grizzly Homes

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	ND	1	mg/L						
Fluoride	ND	0.1	mg/L						
Nitrate as N	ND	0.1	mg/L						
Nitrite as N	ND	0.05	mg/L						
Sulphate	ND	1	mg/L						
General Inorganics									
Alkalinity, total	ND	5	mg/L						
Ammonia as N	ND	0.01	mg/L						
Dissolved Organic Carbon	ND	0.5	mg/L						
Colour	ND	2	TCU						
Conductivity	ND	5	uS/cm						
Phenolics	ND	0.001	mg/L						
Total Dissolved Solids	ND	10	mg/L						
Sulphide	ND	0.02	mg/L						
Tannin & Lignin	ND	0.1	mg/L						
Total Kjeldahl Nitrogen	ND	0.1	mg/L						
Turbidity	ND	0.1	NTU						
Metals									
Calcium	ND	0.1	mg/L						
Iron	ND	0.1	mg/L						
Magnesium	ND	0.2	mg/L						
Manganese	ND	0.005	mg/L						
Potassium	ND	0.1	mg/L						
Sodium	ND	0.2	mg/L						
Microbiological Parameters									
E. coli	ND	1	CFU/100mL						
Fecal Coliforms	ND	1	CFU/100mL						
Total Coliforms	ND	1	CFU/100mL						
Heterotrophic Plate Count	ND	10	CFU/mL						

Report Date: 25-Jan-2022 Order Date: 19-Jan-2022

Project Description: 22-0256

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)
Client PO: Grizzly Homes

Method Quality Control: Duplicate

		Reporting				%REC		RPD	
Analyte	Result	Limit	Units	Source Result	%REC	Limit	RPD	Limit	Notes
Anions									
Chloride	20.0	1	mg/L	20.1			0.2	10	
Fluoride	0.25	0.1	mg/L	0.24			1.7	10	
Nitrate as N	3.92	0.1	mg/L	3.94			0.5	10	
Nitrite as N	1.69	0.05	mg/L	1.68			0.4	10	
Sulphate	22.0	1	mg/L	22.1			0.3	10	
General Inorganics									
Alkalinity, total	251	5	mg/L	253			1.0	14	
Ammonia as N	0.048	0.01	mg/L	0.048			1.0	17.7	
Dissolved Organic Carbon	1.9	0.5	mg/L	1.4			27.8	37	
Colour	17	2	TCU	16			6.1	12	
Conductivity	574	5	uS/cm	599			4.2	5	
pH	7.6	0.1	pH Units	7.6			8.0	3.3	
Phenolics	ND	0.001	mg/L	ND			NC	10	
Total Dissolved Solids	146	10	mg/L	152			4.0	10	
Sulphide	ND	0.02	mg/L	ND			NC	10	
Tannin & Lignin	0.2	0.1	mg/L	0.2			8.7	11	
Total Kjeldahl Nitrogen	0.10	0.1	mg/L	0.10			3.6	16	
Turbidity	7.5	0.1	NTU	7.4			1.2	10	
Metals									
Calcium	90.6	0.1	mg/L	91.3			0.7	20	
Iron	ND	0.1	mg/L	ND			NC	20	
Magnesium	35.1	0.2	mg/L	34.8			8.0	20	
Manganese	0.038	0.005	mg/L	0.037			3.1	20	
Potassium	2.5	0.1	mg/L	2.5			2.0	20	
Sodium	26.5	0.2	mg/L	26.7			8.0	20	
Microbiological Parameters			-						
Heterotrophic Plate Count	120	10	CFU/mL	170			34.0	30	BAC04

Report Date: 25-Jan-2022 Order Date: 19-Jan-2022

Project Description: 22-0256

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)
Client PO: Grizzly Homes

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	29.5	1	mg/L	20.1	94.5	77-123			
Fluoride	1.18	0.1	mg/L	0.24	93.9	79-121			
Nitrate as N	4.83	0.1	mg/L	3.94	88.7	79-120			
Nitrite as N	2.62	0.05	mg/L	1.68	94.5	84-117			
Sulphate	31.6	1	mg/L	22.1	95.1	74-126			
General Inorganics									
Ammonia as N	0.307	0.01	mg/L	0.048	104	81-124			
Dissolved Organic Carbon	12.4	0.5	mg/L	1.4	110	60-133			
Phenolics	0.025	0.001	mg/L	ND	100	67-133			
Total Dissolved Solids	86.0	10	mg/L	ND	86.0	75-125			
Sulphide	0.54	0.02	mg/L	ND	107	79-115			
Tannin & Lignin	1.1	0.1	mg/L	0.2	91.9	71-113			
Total Kjeldahl Nitrogen	2.33	0.1	mg/L	0.10	111	81-126			
Metals									
Calcium	95800	0.1	mg/L	91300	45.4	80-120		Q	M-07
Iron	2300	0.1	mg/L	12.4	91.5	80-120			
Magnesium	42100	0.2	mg/L	34800	72.8	80-120		Q	M-07
Manganese	86.9	0.005	mg/L	36.8	100	80-120			
Potassium	11900	0.1	mg/L	2530	93.3	80-120			
Sodium	34100	0.2	mg/L	26700	73.8	80-120		Q	M-07

Report Date: 25-Jan-2022 Order Date: 19-Jan-2022

Project Description: 22-0256

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)
Client PO: Grizzly Homes

Qualifier Notes:

Sample Qualifiers:

2: A2C - Background counts greater than 200

QC Qualifiers :

BAC04: Duplicate QC data falls within method prescribed 95% confidence limits.

QM-07: The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on

other acceptable QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery. RPD: Relative percent difference.

NC: Not Calculated

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

McIntosh Perry Consulting Eng. (Carp)

115 Walgreen Rd. Carp, ON K0A 1L0 Attn: Monica Black

Client PO: Grizzly Homes Subdivision

Project: 22-0256 Custody: 60213 Report Date: 16-Jul-2021 Order Date: 13-Jul-2021

Order #: 2129274

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 2129274-01
 TW2-1

 2129274-02
 TW2-2

Approved By:

Dale Robertson, BSc Laboratory Director

Order #: 2129274

Report Date: 16-Jul-2021 Order Date: 13-Jul-2021

 Client:
 McIntosh Perry Consulting Eng. (Carp)
 Order Date: 13-Jul-2021

 Client PO:
 Grizzly Homes Subdivision
 Project Description: 22-0256

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Alkalinity, total to pH 4.5	EPA 310.1 - Titration to pH 4.5	14-Jul-21	14-Jul-21
Ammonia, as N	EPA 351.2 - Auto Colour	14-Jul-21	14-Jul-21
Anions	EPA 300.1 - IC	14-Jul-21	14-Jul-21
Colour	SM2120 - Spectrophotometric	14-Jul-21	14-Jul-21
Conductivity	EPA 9050A- probe @25 °C	14-Jul-21	14-Jul-21
Dissolved Organic Carbon	MOE E3247B - Combustion IR, filtration	14-Jul-21	14-Jul-21
E. coli	MOE E3407	14-Jul-21	15-Jul-21
Fecal Coliform	SM 9222D	14-Jul-21	15-Jul-21
Heterotrophic Plate Count	SM 9215C	14-Jul-21	16-Jul-21
Metals, ICP-MS	EPA 200.8 - ICP-MS	14-Jul-21	14-Jul-21
pН	EPA 150.1 - pH probe @25 °C	14-Jul-21	14-Jul-21
Phenolics	EPA 420.2 - Auto Colour, 4AAP	14-Jul-21	14-Jul-21
Hardness	Hardness as CaCO3	14-Jul-21	14-Jul-21
Sulphide	SM 4500SE - Colourimetric	15-Jul-21	16-Jul-21
Tannin/Lignin	SM 5550B - Colourimetric	15-Jul-21	15-Jul-21
Total Coliform	MOE E3407	14-Jul-21	15-Jul-21
Total Dissolved Solids	SM 2540C - gravimetric, filtration	14-Jul-21	15-Jul-21
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	14-Jul-21	15-Jul-21
Turbidity	SM 2130B - Turbidity meter	14-Jul-21	14-Jul-21

Certificate of Analysis Report Date: 16-Jul-2021

Client: McIntosh Perry Consulting Eng. (Carp)

Order Date: 13-Jul-2021
Project Description: 22-0256

Client PO: Grizzly Homes Subdivision Project Description: 22-0256

	Client ID: Sample Date: Sample ID: MDL/Units	TW2-1 13-Jul-21 09:30 2129274-01 Water	TW2-2 13-Jul-21 14:05 2129274-02 Water	- - -	- - - -
Microbiological Parameters	-				
E. coli	1 CFU/100 mL	ND	ND	-	-
Fecal Coliforms	1 CFU/100 mL	ND	ND	-	-
Total Coliforms	1 CFU/100 mL	ND	ND	-	-
Heterotrophic Plate Count	10 CFU/mL	<10	<10	-	-
General Inorganics					
Alkalinity, total	5 mg/L	272	269	-	-
Ammonia as N	0.01 mg/L	0.05	0.06	-	-
Dissolved Organic Carbon	0.5 mg/L	2.0	1.8	-	-
Colour	2 TCU	2	3	-	-
Conductivity	5 uS/cm	620	614	-	-
Hardness	mg/L	293	293	-	-
pН	0.1 pH Units	7.7	7.7	-	-
Phenolics	0.001 mg/L	<0.001	<0.001	-	-
Total Dissolved Solids	10 mg/L	332	314	-	-
Sulphide	0.02 mg/L	<0.02	<0.02	-	-
Tannin & Lignin	0.1 mg/L	<0.1	<0.1	-	-
Total Kjeldahl Nitrogen	0.1 mg/L	<0.1	<0.1	-	-
Turbidity	0.1 NTU	12.5	1.2	-	-
Anions	-		•		
Chloride	1 mg/L	21	20	-	-
Fluoride	0.1 mg/L	0.2	0.2	-	-
Nitrate as N	0.1 mg/L	0.6	0.5	-	-
Nitrite as N	0.05 mg/L	<0.05	<0.05	-	-
Sulphate	1 mg/L	16	17	-	-
Metals					
Calcium	0.1 mg/L	80.0	80.3	-	-
Iron	0.1 mg/L	0.3	<0.1	-	-
Magnesium	0.2 mg/L	22.6	22.4	-	-
Manganese	0.005 mg/L	0.053	0.059	-	-
Potassium	0.1 mg/L	3.0	2.7	-	-
Sodium	0.2 mg/L	9.3	8.5	-	-

Page 3 of 7

Report Date: 16-Jul-2021 Order Date: 13-Jul-2021

Project Description: 22-0256

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client: McIntosh Perry Consulting Eng. (Carp)
Client PO: Grizzly Homes Subdivision

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	ND	1	mg/L						
Fluoride	ND	0.1	mg/L						
Nitrate as N	ND	0.1	mg/L						
Nitrite as N	ND	0.05	mg/L						
Sulphate	ND	1	mg/L						
General Inorganics									
Alkalinity, total	ND	5	mg/L						
Ammonia as N	ND	0.01	mg/L						
Dissolved Organic Carbon	ND	0.5	mg/L						
Colour	ND	2	TCU						
Conductivity	ND	5	uS/cm						
Phenolics	ND	0.001	mg/L						
Total Dissolved Solids	ND	10	mg/L						
Sulphide	ND	0.02	mg/L						
Tannin & Lignin	ND	0.1	mg/L						
Total Kjeldahl Nitrogen	ND	0.1	mg/L						
Turbidity	ND	0.1	NTU						
Metals									
Calcium	ND	0.1	mg/L						
Iron	ND	0.1	mg/L						
Magnesium	ND	0.2	mg/L						
Manganese	ND	0.005	mg/L						
Potassium	ND	0.1	mg/L						
Sodium	ND	0.2	mg/L						
Microbiological Parameters									
E. coli	ND	1	CFU/100 mL						
Fecal Coliforms	ND	1	CFU/100 mL						
Total Coliforms	ND	1	CFU/100 mL						
Heterotrophic Plate Count	ND	10	CFU/mL						

Order #: 2129274

Report Date: 16-Jul-2021

Order Date: 13-Jul-2021 Project Description: 22-0256

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Grizzly Homes Subdivision

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Anions									
Chloride	23.4	1	mg/L	23.4			0.1	10	
Fluoride	0.89	0.1	mg/L	0.89			0.9	10	
Nitrate as N	ND	0.1	mg/L	ND			NC	10	
Nitrite as N	ND	0.05	mg/L	ND			NC	10	
Sulphate	47.4	1	mg/L	47.3			0.4	10	
General Inorganics									
Alkalinity, total	30.9	5	mg/L	31.4			1.6	14	
Ammonia as N	0.057	0.01	mg/L	0.049			16.2	17.7	
Dissolved Organic Carbon	2.8	0.5	mg/L	3.2			14.1	37	
Colour	3	2	TCU	3			0.0	12	
Conductivity	151	5	uS/cm	154			1.6	5	
pH	9.1	0.1	pH Units	9.1			0.1	3.3	
Phenolics	ND	0.001	mg/L	ND			NC	10	
Total Dissolved Solids	80.0	10	mg/L	78.0			2.5	10	
Sulphide	ND	0.02	mg/L	ND			NC	10	
Tannin & Lignin	ND	0.1	mg/L	ND			NC	11	
Total Kjeldahl Nitrogen	ND	0.1	mg/L	ND			NC	16	
Turbidity	13.0	0.1	NTU	12.5			3.9	10	
Metals									
Calcium	33.2	0.1	mg/L	33.2			0.1	20	
Iron	ND	0.1	mg/L	ND			NC	20	
Magnesium	5.7	0.2	mg/L	6.4			11.0	20	
Manganese	0.108	0.005	mg/L	0.106			1.1	20	
Potassium	1.9	0.1	mg/L	1.9			0.7	20	
Sodium	6.7	0.2	mg/L	6.6			1.0	20	
Microbiological Parameters									
E. coli	ND	1	CFU/100 mL	ND			NC	30	
Fecal Coliforms	ND	1	CFU/100 mL	ND			NC	30	
Total Coliforms	ND	1	CFU/100 mL	ND			NC	30	
Heterotrophic Plate Count	ND	10	CFU/mL	ND			NC	30	

Report Date: 16-Jul-2021 Order Date: 13-Jul-2021

Project Description: 22-0256

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)
Client PO: Grizzly Homes Subdivision

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	32.7	1	mg/L	23.4	93.8	77-123			
Fluoride	1.84	0.1	mg/L	0.89	95.4	79-121			
Nitrate as N	1.02	0.1	mg/L	ND	102	79-120			
Nitrite as N	0.926	0.05	mg/L	ND	92.6	84-117			
Sulphate	56.5	1	mg/L	47.3	92.6	74-126			
General Inorganics									
Ammonia as N	0.325	0.01	mg/L	0.049	111	81-124			
Dissolved Organic Carbon	15.6	0.5	mg/L	3.2	123	60-133			
Phenolics	0.025	0.001	mg/L	ND	100	69-132			
Total Dissolved Solids	94.0	10	mg/L	ND	94.0	75-125			
Sulphide	0.50	0.02	mg/L	ND	101	79-115			
Tannin & Lignin	1.0	0.1	mg/L	ND	103	71-113			
Total Kjeldahl Nitrogen	1.97	0.1	mg/L	ND	98.7	81-126			
Metals									
Calcium	41000	0.1	mg/L	33200	78.6	80-120		Q	M-07
Iron	2360	0.1	mg/L	10.5	94.2	80-120			
Magnesium	14400	0.2	mg/L	6410	79.8	80-120		Q	M-07
Manganese	151	0.005	mg/L	106	88.5	80-120			
Potassium	11200	0.1	mg/L	1910	92.5	80-120			
Sodium	15400	0.2	mg/L	6600	88.1	80-120			

Report Date: 16-Jul-2021 Order Date: 13-Jul-2021

Project Description: 22-0256

Certificate of Analysis

Client: McIntosh Perry

Client: McIntosh Perry Consulting Eng. (Carp)
Client PO: Grizzly Homes Subdivision

Qualifier Notes:

Sample Qualifiers:

QC Qualifiers :

QM-07: The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on

other acceptable QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery. RPD: Relative percent difference.

NC: Not Calculated

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

McIntosh Perry Consulting Eng. (Carp)

115 Walgreen Rd. Carp, ON K0A 1L0 Attn: Monica Black

Client PO: Grizzly Homes Subdivision

Project: 22-0256 Custody: 60211 Report Date: 19-Jul-2021 Order Date: 14-Jul-2021

Revised Report Order #: 2129422

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 2129422-01
 TW3-1

 2129422-02
 TW3-2

Approved By:

Dale Robertson, BSc Laboratory Director

Order #: 2129422

Report Date: 19-Jul-2021 Order Date: 14-Jul-2021

 Client:
 McIntosh Perry Consulting Eng. (Carp)
 Order Date: 14-Jul-2021

 Client PO:
 Grizzly Homes Subdivision
 Project Description: 22-0256

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Alkalinity, total to pH 4.5	EPA 310.1 - Titration to pH 4.5	15-Jul-21	15-Jul-21
Ammonia, as N	EPA 351.2 - Auto Colour	16-Jul-21	16-Jul-21
Anions	EPA 300.1 - IC	15-Jul-21	15-Jul-21
Colour	SM2120 - Spectrophotometric	15-Jul-21	15-Jul-21
Conductivity	EPA 9050A- probe @25 °C	15-Jul-21	15-Jul-21
Dissolved Organic Carbon	MOE E3247B - Combustion IR, filtration	15-Jul-21	15-Jul-21
E. coli	MOE E3407	15-Jul-21	16-Jul-21
Fecal Coliform	SM 9222D	15-Jul-21	16-Jul-21
Heterotrophic Plate Count	SM 9215C	15-Jul-21	17-Jul-21
Metals, ICP-MS	EPA 200.8 - ICP-MS	15-Jul-21	15-Jul-21
pH	EPA 150.1 - pH probe @25 °C	15-Jul-21	15-Jul-21
Phenolics	EPA 420.2 - Auto Colour, 4AAP	16-Jul-21	16-Jul-21
Hardness	Hardness as CaCO3	15-Jul-21	15-Jul-21
Sulphide	SM 4500SE - Colourimetric	15-Jul-21	16-Jul-21
Tannin/Lignin	SM 5550B - Colourimetric	15-Jul-21	15-Jul-21
Total Coliform	MOE E3407	15-Jul-21	16-Jul-21
Total Dissolved Solids	SM 2540C - gravimetric, filtration	15-Jul-21	16-Jul-21
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	15-Jul-21	15-Jul-21
Turbidity	SM 2130B - Turbidity meter	15-Jul-21	15-Jul-21

Order #: 2129422

Report Date: 19-Jul-2021 Order Date: 14-Jul-2021

Project Description: 22-0256

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Grizzly Homes Subdivision

TW3-2 Client ID: TW3-1 Sample Date: 14-Jul-21 09:07 14-Jul-21 13:55 2129422-01 2129422-02 Sample ID: Water Water MDL/Units **Microbiological Parameters** 1 CFU/100 mL ND ND 1 CFU/100 mL Fecal Coliforms ND ND 1 CFU/100 mL Total Coliforms ND ND 10 CFU/mL Heterotrophic Plate Count <10 <10 **General Inorganics** Alkalinity, total 5 mg/L 279 280 0.01 mg/L Ammonia as N 0.05 0.05 0.5 mg/L Dissolved Organic Carbon 0.9 1.0 2 TCU Colour <2 <2 5 uS/cm Conductivity 668 678 mg/L Hardness 282 283 0.1 pH Units рΗ 7.7 7.7 0.001 mg/L Phenolics <0.001 <0.001 Total Dissolved Solids 10 mg/L 334 356 0.02 mg/L Sulphide < 0.02 < 0.02 _ 0.1 mg/L Tannin & Lignin < 0.1 <0.1 Total Kjeldahl Nitrogen 0.1 mg/L 0.1 <0.1 0.1 NTU Turbidity 30.2 6.3 Anions Chloride 1 mg/L 27 28 0.1 mg/L Fluoride <0.1 <0.1 0.1 mg/L Nitrate as N 2.5 2.4 _ 0.05 mg/L Nitrite as N < 0.05 < 0.05 1 mg/L Sulphate 15 15 _ Metals Calcium 0.1 mg/L 75.7 75.5 0.1 mg/L Iron 0.4 0.1 0.2 mg/L Magnesium 22.7 22.9 0.005 mg/L Manganese 0.026 0.010 Potassium 0.1 mg/L 4.2 3.6 Sodium 0.2 mg/L 13.4 13.3 _

Report Date: 19-Jul-2021 Order Date: 14-Jul-2021

Project Description: 22-0256

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)
Client PO: Grizzly Homes Subdivision

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	ND	1	mg/L						
Fluoride	ND	0.1	mg/L						
Nitrate as N	ND	0.1	mg/L						
Nitrite as N	ND	0.05	mg/L						
Sulphate	ND	1	mg/L						
General Inorganics									
Alkalinity, total	ND	5	mg/L						
Ammonia as N	ND	0.01	mg/L						
Dissolved Organic Carbon	ND	0.5	mg/L						
Colour	ND	2	TCU						
Conductivity	ND	5	uS/cm						
Phenolics	ND	0.001	mg/L						
Total Dissolved Solids	ND	10	mg/L						
Sulphide	ND	0.02	mg/L						
Tannin & Lignin	ND	0.1	mg/L						
Total Kjeldahl Nitrogen	ND	0.1	mg/L						
Turbidity	ND	0.1	NTU						
Metals									
Calcium	ND	0.1	mg/L						
Iron	ND	0.1	mg/L						
Magnesium	ND	0.2	mg/L						
Manganese	ND	0.005	mg/L						
Potassium	ND	0.1	mg/L						
Sodium	ND	0.2	mg/L						
Microbiological Parameters									
E. coli	ND	1	CFU/100 mL						
Fecal Coliforms	ND	1	CFU/100 mL						
Total Coliforms	ND	1	CFU/100 mL						
Heterotrophic Plate Count	ND	10	CFU/mL						

Report Date: 19-Jul-2021 Order Date: 14-Jul-2021

Project Description: 22-0256

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Grizzly Homes Subdivision

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Anions									
Chloride	27.5	1	mg/L	27.4			0.1	10	
Fluoride	ND	0.1	mg/L	ND			NC	10	
Nitrate as N	2.47	0.1	mg/L	2.47			0.1	10	
Nitrite as N	ND	0.05	mg/L	ND			NC	10	
Sulphate	14.7	1	mg/L	14.7			0.0	10	
General Inorganics									
Alkalinity, total	230	5	mg/L	233			1.2	14	
Ammonia as N	0.036	0.01	mg/L	0.037			3.0	18	
Dissolved Organic Carbon	3.4	0.5	mg/L	3.2			5.1	37	
Colour	ND	2	TČU	ND			NC	12	
Conductivity	489	5	uS/cm	496			1.3	5	
pH	9.3	0.1	pH Units	9.3			0.0	3.3	
Phenolics	ND	0.001	mg/L	ND			NC	10	
Sulphide	ND	0.02	mg/L	ND			NC	10	
Tannin & Lignin	ND	0.1	mg/L	ND			NC	11	
Total Kjeldahl Nitrogen	ND	0.1	mg/L	0.10			NC	16	
Turbidity	6.4	0.1	NŤU	6.3			2.2	10	
Metals									
Calcium	ND	0.1	mg/L	ND			NC	20	
Iron	ND	0.1	mg/L	ND			NC	20	
Magnesium	ND	0.2	mg/L	ND			NC	20	
Manganese	ND	0.005	mg/L	ND			NC	20	
Potassium	0.2	0.1	mg/L	0.2			0.2	20	
Sodium	58.7	0.2	mg/L	58.5			0.3	20	
Microbiological Parameters									
E. coli	ND	1	CFU/100 mL	ND			NC	30	
Fecal Coliforms	ND	1	CFU/100 mL	ND			NC	30	
Total Coliforms	ND	1	CFU/100 mL	ND			NC	30	
Heterotrophic Plate Count	ND	10	CFU/mL	ND			NC	30	

Order #: 2129422

Report Date: 19-Jul-2021 Order Date: 14-Jul-2021

 Client:
 McIntosh Perry Consulting Eng. (Carp)
 Order Date: 14-Jul-2021

 Client PO:
 Grizzly Homes Subdivision
 Project Description: 22-0256

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	36.5	1	mg/L	27.4	90.9	77-123			
Fluoride	1.01	0.1	mg/L	ND	101	79-121			
Nitrate as N	3.39	0.1	mg/L	2.47	92.4	79-120			
Nitrite as N	0.973	0.05	mg/L	ND	97.3	84-117			
Sulphate	24.3	1	mg/L	14.7	96.6	74-126			
General Inorganics									
Ammonia as N	0.313	0.01	mg/L	0.037	110	81-124			
Dissolved Organic Carbon	14.7	0.5	mg/L	3.2	115	60-133			
Phenolics	0.023	0.001	mg/L	ND	91.5	69-132			
Total Dissolved Solids	92.0	10	mg/L	ND	92.0	75-125			
Sulphide	0.52	0.02	mg/L	ND	104	79-115			
Tannin & Lignin	1.0	0.1	mg/L	ND	103	71-113			
Total Kjeldahl Nitrogen	1.99	0.1	mg/L	0.10	94.4	81-126			
Metals									
Calcium	9490	0.1	mg/L	36.0	94.6	80-120			
Iron	2370	0.1	mg/L	3.5	94.6	80-120			
Magnesium	9730	0.2	mg/L	9.2	97.2	80-120			
Manganese	48.4	0.005	mg/L	0.136	96.6	80-120			
Potassium	9710	0.1	mg/L	240	94.7	80-120			
Sodium	63600	0.2	mg/L	58500	50.5	80-120		QI	M-07

Report Date: 19-Jul-2021 Certificate of Analysis Client: McIntosh Perry Consulting Eng. (Carp) Order Date: 14-Jul-2021 Client PO: Grizzly Homes Subdivision

Project Description: 22-0256

Qualifier Notes:

Sample Qualifiers:

QC Qualifiers :

QM-07: The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on

other acceptable QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

Revision 1 - This report now includes data for HPC

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery. RPD: Relative percent difference.

NC: Not Calculated

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

McIntosh Perry Consulting Eng. (Carp)

115 Walgreen Rd. Carp, ON K0A 1L0 Attn: Monica Black

Client PO: Grizzly Homes

Project: 22-0256 Custody: 60208 Report Date: 15-Sep-2021 Order Date: 10-Sep-2021

Order #: 2137462

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 2137462-01
 TW4-1

 2137462-02
 TW4-2

Approved By:

Mark Froto

Mark Foto, M.Sc. Lab Supervisor

Order #: 2137462

Report Date: 15-Sep-2021 Order Date: 10-Sep-2021

Project Description: 22-0256

Client PO: Grizzly Homes

Client: McIntosh Perry Consulting Eng. (Carp)

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Alkalinity, total to pH 4.5	EPA 310.1 - Titration to pH 4.5	10-Sep-21	10-Sep-21
Ammonia, as N	EPA 351.2 - Auto Colour	14-Sep-21	14-Sep-21
Anions	EPA 300.1 - IC	10-Sep-21	11-Sep-21
Colour	SM2120 - Spectrophotometric	10-Sep-21	10-Sep-21
Conductivity	EPA 9050A- probe @25 °C	10-Sep-21	10-Sep-21
Dissolved Organic Carbon	MOE E3247B - Combustion IR, filtration	10-Sep-21	10-Sep-21
E. coli	MOE E3407	10-Sep-21	10-Sep-21
Fecal Coliform	SM 9222D	10-Sep-21	10-Sep-21
Metals, ICP-MS	EPA 200.8 - ICP-MS	13-Sep-21	13-Sep-21
pH	EPA 150.1 - pH probe @25 °C	10-Sep-21	10-Sep-21
Phenolics	EPA 420.2 - Auto Colour, 4AAP	10-Sep-21	10-Sep-21
Hardness	Hardness as CaCO3	13-Sep-21	13-Sep-21
Sulphide	SM 4500SE - Colourimetric	10-Sep-21	10-Sep-21
Tannin/Lignin	SM 5550B - Colourimetric	14-Sep-21	14-Sep-21
Total Coliform	MOE E3407	10-Sep-21	10-Sep-21
Total Dissolved Solids	SM 2540C - gravimetric, filtration	10-Sep-21	13-Sep-21
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	13-Sep-21	15-Sep-21
Turbidity	SM 2130B - Turbidity meter	10-Sep-21	10-Sep-21

Report Date: 15-Sep-2021

Order Date: 10-Sep-2021
Project Description: 22-0256

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Grizzly Homes

TW4-2 Client ID: TW4-1 Sample Date: 09-Sep-21 08:55 09-Sep-21 13:45 2137462-01 2137462-02 Sample ID: **Drinking Water Drinking Water** MDL/Units **Microbiological Parameters** 1 CFU/100 mL ND ND 1 CFU/100 mL Fecal Coliforms ND ND 1 CFU/100 mL **Total Coliforms** ND ND General Inorganics 5 mg/L Alkalinity, total 269 272 Ammonia as N 0.01 mg/L 0.01 0.01 Dissolved Organic Carbon 0.5 mg/L 1.3 0.9 2 TCU Colour <2 <2 5 uS/cm Conductivity 621 643 mg/L Hardness 286 292 0.1 pH Units рΗ 7.7 7.7 0.001 mg/L Phenolics <0.001 <0.001 10 mg/L **Total Dissolved Solids** 298 340 0.02 mg/L Sulphide < 0.02 < 0.02 0.1 mg/L Tannin & Lignin <0.1 < 0.1 _ 0.1 mg/L Total Kjeldahl Nitrogen < 0.1 <0.1 0.1 NTU Turbidity 17.0 8.0 Anions Chloride 1 mg/L 30 26 0.1 mg/L Fluoride <0.1 <0.1 0.1 mg/L Nitrate as N 1.3 1.6 0.05 mg/L Nitrite as N < 0.05 < 0.05 _ 1 mg/L Sulphate 16 15 Metals 0.1 mg/L Calcium 79.5 81.3 0.1 mg/L Iron < 0.1 <0.1 0.2 mg/L Magnesium 21.2 21.7 0.005 mg/L Manganese 800.0 <0.005 0.1 mg/L Potassium 3.5 3.4 0.2 mg/L Sodium 22.2 19.4

Page 3 of 7

Report Date: 15-Sep-2021 Order Date: 10-Sep-2021

Project Description: 22-0256

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Grizzly Homes

Method Quality Control: Blank

Amelida	_	Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Anions									
Chloride	ND	1	mg/L						
Fluoride	ND	0.1	mg/L						
Nitrate as N	ND	0.1	mg/L						
Nitrite as N	ND	0.05	mg/L						
Sulphate	ND	1	mg/L						
General Inorganics			-						
Alkalinity, total	ND	5	mg/L						
Ammonia as N	ND	0.01	mg/L						
Dissolved Organic Carbon	ND	0.5	mg/L						
Colour	ND	2	TČU						
Conductivity	ND	5	uS/cm						
Phenolics	ND	0.001	mg/L						
Total Dissolved Solids	ND	10	mg/L						
Sulphide	ND	0.02	mg/L						
Tannin & Lignin	ND	0.1	mg/L						
Total Kjeldahl Nitrogen	ND	0.1	mg/L						
Turbidity	ND	0.1	NTU						
Metals									
Calcium	ND	0.1	mg/L						
Iron	ND	0.1	mg/L						
Magnesium	ND	0.2	mg/L						
Manganese	ND	0.005	mg/L						
Potassium	ND	0.1	mg/L						
Sodium	ND	0.2	mg/L						
Microbiological Parameters			-						
E. coli	ND	1	CFU/100 mL						
Fecal Coliforms	ND	1	CFU/100 mL						
Total Coliforms	ND	1	CFU/100 mL						

Report Date: 15-Sep-2021 Order Date: 10-Sep-2021

Project Description: 22-0256

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Grizzly Homes

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Anions									
Chloride	918	5	mg/L	919			0.1	10	
Fluoride	1.16	0.1	mg/L	1.11			4.1	10	
Nitrate as N	0.15	0.1	mg/L	0.15			1.5	10	
Nitrite as N	ND	0.05	mg/L	ND			NC	10	
Sulphate	425	5	mg/L	422			0.6	10	
General Inorganics									
Alkalinity, total	214	5	mg/L	217			1.4	14	
Ammonia as N	0.015	0.01	mg/L	0.014			5.0	17.7	
Dissolved Organic Carbon	ND	0.5	mg/L	ND			NC	37	
Colour	ND	2	TCU	ND			NC	12	
Conductivity	416	5	uS/cm	423			1.7	5	
pH	8.4	0.1	pH Units	8.4			0.1	3.3	
Phenolics	ND	0.001	mg/L	ND			NC	10	
Total Dissolved Solids	76.0	10	mg/L	74.0			2.7	10	
Sulphide	ND	0.02	mg/L	ND			NC	10	
Tannin & Lignin	ND	0.1	mg/L	ND			NC	11	
Total Kjeldahl Nitrogen	0.35	0.1	mg/L	0.37			5.1	16	
Turbidity	0.9	0.1	NTU	8.0			3.5	10	
Metals									
Calcium	51.3	0.1	mg/L	52.0			1.4	20	
Iron	0.7	0.1	mg/L	0.7			1.4	20	
Magnesium	14.4	0.2	mg/L	14.5			0.6	20	
Manganese	0.020	0.005	mg/L	0.020			0.2	20	
Potassium	0.8	0.1	mg/L	8.0			1.9	20	
Sodium	6.4	0.2	mg/L	6.3			2.2	20	
Microbiological Parameters									
E. coli	ND	1	CFU/100 mL	ND			NC	30	
Fecal Coliforms	ND	1	CFU/100 mL	ND			NC	30	
Total Coliforms	ND	1	CFU/100 mL	ND			NC	30	

Report Date: 15-Sep-2021 Order Date: 10-Sep-2021

Project Description: 22-0256

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)
Client PO: Grizzly Homes

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	8.98	1	mg/L	ND	89.8	85-115			
Fluoride	0.99	0.1	mg/L	ND	98.7	83-117			
Nitrate as N	0.97	0.1	mg/L	ND	96.7	86-114			
Nitrite as N	1.01	0.05	mg/L	ND	101	85-115			
Sulphate	8.97	1	mg/L	ND	89.7	86-114			
General Inorganics									
Ammonia as N	0.251	0.01	mg/L	0.014	94.9	81-124			
Dissolved Organic Carbon	11.0	0.5	mg/L	ND	110	60-133			
Phenolics	0.026	0.001	mg/L	ND	103	69-132			
Total Dissolved Solids	96.0	10	mg/L	ND	96.0	75-125			
Sulphide	0.54	0.02	mg/L	ND	108	79-115			
Tannin & Lignin	1.1	0.1	mg/L	ND	106	71-113			
Total Kjeldahl Nitrogen	2.28	0.1	mg/L	0.37	95.5	81-126			
Metals									
Calcium	59000	0.1	mg/L	52000	70.9	80-120		C	M-07
Iron	2800	0.1	mg/L	667	85.4	80-120			
Magnesium	22500	0.2	mg/L	14500	80.3	80-120			
Manganese	67.0	0.005	mg/L	19.8	94.3	80-120			
Potassium	11300	0.1	mg/L	839	104	80-120			
Sodium	15600	0.2	mg/L	6250	93.3	80-120			

Report Date: 15-Sep-2021 Order Date: 10-Sep-2021

Project Description: 22-0256

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)
Client PO: Grizzly Homes

Qualifier Notes:

Login Qualifiers:

Samples received submerged in water, possibly melted ice. This condition can compromise sample integrity.

Applies to samples: TW4-1

Sample Qualifiers:

QC Qualifiers:

QM-07: The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on

other acceptable QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

McIntosh Perry Consulting Eng. (Carp)

115 Walgreen Rd.

RR#3 Carp, ON K0A 1L0 Attn: Andrew MacHardy

Client PO: Grizzly Homes Subdivision

Project: 22-0256 Custody: 60212 Report Date: 16-Jul-2021 Order Date: 15-Jul-2021

Order #: 2129521

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 2129521-01
 TW5-1

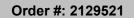
 2129521-02
 TW5-2

Approved By:

Mark Froto

Mark Foto, M.Sc. Lab Supervisor

Order #: 2129521


Report Date: 16-Jul-2021 Order Date: 15-Jul-2021

 Client:
 McIntosh Perry Consulting Eng. (Carp)
 Order Date: 15-Jul-2021

 Client PO:
 Grizzly Homes Subdivision
 Project Description: 22-0256

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Alkalinity, total to pH 4.5	EPA 310.1 - Titration to pH 4.5	16-Jul-21	16-Jul-21
Ammonia, as N	EPA 351.2 - Auto Colour	16-Jul-21	16-Jul-21
Anions	EPA 300.1 - IC	15-Jul-21	15-Jul-21
Colour	SM2120 - Spectrophotometric	16-Jul-21	16-Jul-21
Conductivity	EPA 9050A- probe @25 °C	16-Jul-21	16-Jul-21
Dissolved Organic Carbon	MOE E3247B - Combustion IR, filtration	16-Jul-21	16-Jul-21
E. coli	MOE E3407	15-Jul-21	15-Jul-21
Fecal Coliform	SM 9222D	15-Jul-21	15-Jul-21
Metals, ICP-MS	EPA 200.8 - ICP-MS	16-Jul-21	16-Jul-21
pH	EPA 150.1 - pH probe @25 °C	16-Jul-21	16-Jul-21
Phenolics	EPA 420.2 - Auto Colour, 4AAP	16-Jul-21	16-Jul-21
Sulphide	SM 4500SE - Colourimetric	15-Jul-21	16-Jul-21
Tannin/Lignin	SM 5550B - Colourimetric	16-Jul-21	16-Jul-21
Total Coliform	MOE E3407	15-Jul-21	15-Jul-21
Total Dissolved Solids	SM 2540C - gravimetric, filtration	15-Jul-21	16-Jul-21
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	16-Jul-21	16-Jul-21
Turbidity	SM 2130B - Turbidity meter	16-Jul-21	16-Jul-21

Client: McIntosh Perry Consulting Eng. (Carp)
Client PO: Grizzly Homes Subdivision

Report Date: 16-Jul-2021 Order Date: 15-Jul-2021

Project Description: 22-0256

	Client ID: Sample Date: Sample ID:	TW5-1 15-Jul-21 08:45 2129521-01	TW5-2 15-Jul-21 13:15 2129521-02	- - -	- - -
	MDL/Units	Water	Water	-	-
Microbiological Parameters			_		
E. coli	1 CFU/100 mL	ND	ND	-	-
Fecal Coliforms	1 CFU/100 mL	ND	ND	-	-
Total Coliforms	1 CFU/100 mL	ND	ND	-	-
General Inorganics					
Alkalinity, total	5 mg/L	264	264	-	-
Ammonia as N	0.01 mg/L	0.04	0.04	-	-
Dissolved Organic Carbon	0.5 mg/L	2.5	1.7	-	-
Colour	2 TCU	3	3	-	-
Conductivity	5 uS/cm	662	667	-	-
рН	0.1 pH Units	7.6	7.7	-	-
Phenolics	0.001 mg/L	<0.001	<0.001	-	-
Total Dissolved Solids	10 mg/L	346	338	-	-
Sulphide	0.02 mg/L	<0.02	<0.02	-	-
Tannin & Lignin	0.1 mg/L	<0.1	<0.1	-	-
Total Kjeldahl Nitrogen	0.1 mg/L	<0.1	<0.1	-	-
Turbidity	0.1 NTU	1.6	0.3	-	-
Anions					
Chloride	1 mg/L	39	39	-	-
Fluoride	0.1 mg/L	<0.1	<0.1	-	-
Nitrate as N	0.1 mg/L	0.9	0.8	-	-
Nitrite as N	0.05 mg/L	<0.05	<0.05	-	-
Sulphate	1 mg/L	16	16	-	-
Metals	•		•		
Calcium	100 ug/L	64500	63900	-	-
Iron	100 ug/L	<100	<100	-	-
Magnesium	200 ug/L	19700	19900	-	-
Manganese	5 ug/L	<5	<5	-	-
Potassium	100 ug/L	1370	1400	-	-
Sodium	200 ug/L	23600	24000	-	-

Report Date: 16-Jul-2021 Order Date: 15-Jul-2021

Project Description: 22-0256

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)
Client PO: Grizzly Homes Subdivision

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	ND	1	mg/L						
Fluoride	ND	0.1	mg/L						
Nitrate as N	ND	0.1	mg/L						
Nitrite as N	ND	0.05	mg/L						
Sulphate	ND	1	mg/L						
General Inorganics									
Alkalinity, total	ND	5	mg/L						
Ammonia as N	ND	0.01	mg/L						
Dissolved Organic Carbon	ND	0.5	mg/L						
Colour	ND	2	TCU						
Conductivity	ND	5	uS/cm						
Phenolics	ND	0.001	mg/L						
Total Dissolved Solids	ND	10	mg/L						
Sulphide	ND	0.02	mg/L						
Tannin & Lignin	ND	0.1	mg/L						
Total Kjeldahl Nitrogen	ND	0.1	mg/L						
Turbidity	ND	0.1	NTU						
Metals									
Calcium	ND	100	ug/L						
Iron	ND	100	ug/L						
Magnesium	ND	200	ug/L						
Manganese	ND	5	ug/L						
Potassium	ND	100	ug/L						
Sodium	ND	200	ug/L						
Microbiological Parameters			_						
E. coli	ND	1	CFU/100 mL						
Fecal Coliforms	ND	1	CFU/100 mL						
Total Coliforms	ND	1	CFU/100 mL						

Report Date: 16-Jul-2021 Order Date: 15-Jul-2021

Project Description: 22-0256

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)
Client PO: Grizzly Homes Subdivision

Method Quality Control: Duplicate

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Anions									
Chloride	27.5	1	mg/L	27.4			0.1	10	
Fluoride	ND	0.1	mg/L	ND			NC	10	
Nitrate as N	2.47	0.1	mg/L	2.47			0.1	10	
Nitrite as N	ND	0.05	mg/L	ND			NC	10	
Sulphate	14.7	1	mg/L	14.7			0.0	10	
General Inorganics									
Alkalinity, total	259	5	mg/L	264			1.6	14	
Ammonia as N	0.036	0.01	mg/L	0.037			3.0	18	
Dissolved Organic Carbon	2.3	0.5	mg/L	2.5			8.7	37	
Colour	3	2	TCU	3			0.0	12	
Conductivity	665	5	uS/cm	662			0.4	5	
pH	7.6	0.1	pH Units	7.6			0.5	3.3	
Phenolics	0.004	0.001	mg/L	ND			NC	10	
Sulphide	ND	0.02	mg/L	ND			NC	10	
Tannin & Lignin	ND	0.1	mg/L	ND			NC	11	
Total Kjeldahl Nitrogen	1.15	0.1	mg/L	1.16			0.3	16	
Turbidity	1.6	0.1	NTU	1.6			3.8	10	
Metals									
Calcium	28100	100	ug/L	28200			0.3	20	
Iron	ND	100	ug/L	ND			NC	20	
Magnesium	7000	200	ug/L	6800			3.0	20	
Manganese	ND	5	ug/L	ND			NC	20	
Potassium	1300	100	ug/L	1300			0.5	20	
Sodium	13000	200	ug/L	13000			0.3	20	
Microbiological Parameters			-						
E. coli	ND	1	CFU/100 mL	ND			NC	30	BAC14
Fecal Coliforms	ND	1	CFU/100 mL	ND			NC	30	
Total Coliforms	ND	1	CFU/100 mL	ND			NC	30	BAC14

Report Date: 16-Jul-2021 Order Date: 15-Jul-2021

Project Description: 22-0256

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)
Client PO: Grizzly Homes Subdivision

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	36.5	1	mg/L	27.4	90.9	77-123			
Fluoride	1.01	0.1	mg/L	ND	101	79-121			
Nitrate as N	3.39	0.1	mg/L	2.47	92.4	79-120			
Nitrite as N	0.973	0.05	mg/L	ND	97.3	84-117			
Sulphate	24.3	1	mg/L	14.7	96.6	74-126			
General Inorganics									
Ammonia as N	0.313	0.01	mg/L	0.037	110	81-124			
Dissolved Organic Carbon	13.2	0.5	mg/L	2.5	107	60-133			
Phenolics	0.025	0.001	mg/L	ND	100	69-132			
Total Dissolved Solids	92.0	10	mg/L	ND	92.0	75-125			
Sulphide	0.50	0.02	mg/L	ND	101	79-115			
Tannin & Lignin	1.0	0.1	mg/L	ND	101	71-113			
Total Kjeldahl Nitrogen	3.03	0.1	mg/L	1.16	93.7	81-126			
Metals									
Calcium	34200	100	ug/L	28200	60.4	80-120		Q	M-07
Iron	2000	100	ug/L	ND	79.4	80-120		Q	M-07
Magnesium	14700	200	ug/L	6800	79.2	80-120		Q	M-07
Manganese	48.9	5	ug/L	ND	94.1	80-120			
Potassium	9330	100	ug/L	1300	80.2	80-120			
Sodium	19800	200	ug/L	13000	67.7	80-120		Q	M-07

Report Date: 16-Jul-2021 Order Date: 15-Jul-2021

 Client:
 McIntosh Perry Consulting Eng. (Carp)
 Order Date: 15-Jul-2021

 Client PO:
 Grizzly Homes Subdivision
 Project Description: 22-0256

Qualifier Notes:

Sample Qualifiers:

Certificate of Analysis

QC Qualifiers :

BAC14: A2C - Background counts greater than 200

QM-07: The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on

other acceptable QC.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

McIntosh Perry Consulting Eng. (Carp)

115 Walgreen Rd. Carp, ON K0A 1L0 Attn: Monica Black

Client PO: Grizzly

Project: 22-0256

Custody: 70268

Report Date: 26-Apr-2023

Order Date: 19-Apr-2023

Order #: 2316293

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2316293-01	TW2
2316293-02	TW1
2316293-03	TW3
2316293-04	TW5
2316293-05	9578 Hwy. 15

Approved By:

Dale Robertson, BSc

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Grizzly

Report Date: 26-Apr-2023

Order Date: 19-Apr-2023

Project Description: 22-0256

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Ammonia, as N	EPA 351.2 - Auto Colour	24-Apr-23	25-Apr-23
Anions	EPA 300.1 - IC	20-Apr-23	20-Apr-23
E. coli	MOE E3407	20-Apr-23	20-Apr-23
Fecal Coliform	SM 9222D	20-Apr-23	20-Apr-23
Phosphorus, total, water	EPA 365.4 - Auto Colour, digestion	20-Apr-23	24-Apr-23
Total Coliform	MOE E3407	20-Apr-23	20-Apr-23
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	20-Apr-23	24-Apr-23
VOCs by P&T GC-MS	EPA 624 - P&T GC-MS	21-Apr-23	21-Apr-23

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Grizzly

Report Date: 26-Apr-2023

Order Date: 19-Apr-2023

Project Description: 22-0256

Summary of Criteria Exceedances

(If this page is blank then there are no exceedances)
Only those criteria that a sample exceeds will be highlighted in red

Regulatory Comparison:

Paracel Laboratories has provided regulatory guidelines on this report for informational purposes only and makes no representations or warranties that the data is accurate or reflects the current regulatory values. The user is advised to consult with the appropriate official regulations to evaluate compliance. Sample results that are highlighted have exceeded the selected regulatory limit. Calculated uncertainty estimations have not been applied for determining regulatory exceedances.

Sample	Analyte	MDL / Units	Result	-	-

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Grizzly

Report Date: 26-Apr-2023

Order Date: 19-Apr-2023

Project Description: 22-0256

	Client ID:	TW2	TW1	TW3	TW5		
	Sample Date:	18-Apr-23 12:00	18-Apr-23 09:45	18-Apr-23 15:45	18-Apr-23 18:30	-	-
	Sample ID:	2316293-01	2316293-02	2316293-03	2316293-04		
	Matrix:	Ground Water	Ground Water	Ground Water	Ground Water		
	MDL/Units						
Microbiological Parameters	<u> </u>						
E. coli	1 CFU/100mL	ND [1]	ND	ND	ND	-	-
Fecal Coliforms	1 CFU/100mL	ND	ND	ND	ND	-	-
Total Coliforms	1 CFU/100mL	ND [1]	ND	ND	1	-	-
General Inorganics							
Ammonia as N	0.01 mg/L	<0.01	0.02	<0.01	<0.01	-	-
Phosphorus, total	0.01 mg/L	<0.01	<0.01	0.02	<0.01	-	-
Total Kjeldahl Nitrogen	0.1 mg/L	<0.1	<0.1	0.2	<0.1	-	-
Anions	<u> </u>		·	·			
Nitrate as N	0.1 mg/L	0.5	<0.1	2.8	1.0	-	-
Nitrite as N	0.05 mg/L	<0.05	<0.05	<0.05	<0.05	-	-
Volatiles							
Acetone	5 ug/L	<5.0	-	-	<5.0	-	-
Benzene	0.5 ug/L	<0.5	-	-	<0.5	-	-
Bromodichloromethane	0.5 ug/L	<0.5	-	-	<0.5	-	-
Bromoform	0.5 ug/L	<0.5	-	-	<0.5	-	-
Bromomethane	0.5 ug/L	<0.5	-	-	<0.5	-	-
Carbon Tetrachloride	0.2 ug/L	<0.2	-	-	<0.2	-	-
Chlorobenzene	0.5 ug/L	<0.5	-	-	<0.5	-	-
Chloroethane	1 ug/L	<1.0	-	-	<1.0	-	-
Chloroform	0.5 ug/L	<0.5	-	-	<0.5	-	-
Chloromethane	3 ug/L	<3.0	-	-	<3.0	-	-
Dibromochloromethane	0.5 ug/L	<0.5	-	-	<0.5	-	-
Dichlorodifluoromethane	1 ug/L	<1.0	-	-	<1.0	-	-
1,2-Dibromoethane	0.2 ug/L	<0.2	-	-	<0.2	-	-
1,2-Dichlorobenzene	0.5 ug/L	<0.5	-	-	<0.5	-	-

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Grizzly

Report Date: 26-Apr-2023

Order Date: 19-Apr-2023

Project Description: 22-0256

	_						
	Client ID:	TW2	TW1	TW3	TW5		
	Sample Date:	18-Apr-23 12:00	18-Apr-23 09:45	18-Apr-23 15:45	18-Apr-23 18:30	-	-
	Sample ID:	2316293-01	2316293-02	2316293-03	2316293-04		
	Matrix:	Ground Water	Ground Water	Ground Water	Ground Water		
	MDL/Units						
Volatiles						_	
1,3-Dichlorobenzene	0.5 ug/L	<0.5	-	-	<0.5	-	-
1,4-Dichlorobenzene	0.5 ug/L	<0.5	-	-	<0.5	-	-
1,1-Dichloroethane	0.5 ug/L	<0.5	-	-	<0.5	-	-
1,2-Dichloroethane	0.5 ug/L	<0.5	-	-	<0.5	-	-
1,1-Dichloroethylene	0.5 ug/L	<0.5	-	-	<0.5	-	-
cis-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	<0.5	-	-
trans-1,2-Dichloroethylene	0.5 ug/L	<0.5	-	-	<0.5	-	-
1,2-Dichloroethylene, total	0.5 ug/L	<0.5	-	-	<0.5	-	-
1,2-Dichloropropane	0.5 ug/L	<0.5	-	-	<0.5	-	-
cis-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	<0.5	-	-
trans-1,3-Dichloropropylene	0.5 ug/L	<0.5	-	-	<0.5	-	-
1,3-Dichloropropene, total	0.5 ug/L	<0.5	-	-	<0.5	-	-
Ethylbenzene	0.5 ug/L	<0.5	-	-	<0.5	-	-
Hexane	1 ug/L	<1.0	-	-	<1.0	-	-
Methyl Ethyl Ketone (2-Butanone)	5 ug/L	<5.0	-	-	<5.0	-	-
Methyl Butyl Ketone (2-Hexanone)	10 ug/L	<10.0	-	-	<10.0	-	-
Methyl Isobutyl Ketone	5 ug/L	<5.0	-	-	<5.0	-	-
Methyl tert-butyl ether	2 ug/L	<2.0	-	-	<2.0	-	-
Methylene Chloride	5 ug/L	<5.0	-	-	<5.0	-	-
Styrene	0.5 ug/L	<0.5	-	-	<0.5	-	-
1,1,1,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	<0.5	-	-
1,1,2,2-Tetrachloroethane	0.5 ug/L	<0.5	-	-	<0.5	-	-
Tetrachloroethylene	0.5 ug/L	<0.5	-	-	<0.5	-	-
Toluene	0.5 ug/L	<0.5	-	-	<0.5	-	-
1,1,1-Trichloroethane	0.5 ug/L	<0.5	-	-	<0.5	-	-

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Grizzly

Report Date: 26-Apr-2023

Order Date: 19-Apr-2023

Project Description: 22-0256

	Client ID: Sample Date: Sample ID:	TW2 18-Apr-23 12:00 2316293-01	TW1 18-Apr-23 09:45 2316293-02	TW3 18-Apr-23 15:45 2316293-03	TW5 18-Apr-23 18:30 2316293-04	-	-
	Matrix:	Ground Water	Ground Water	Ground Water	Ground Water		
	MDL/Units						
Volatiles	•			•	•		•
1,1,2-Trichloroethane	0.5 ug/L	<0.5	-	-	<0.5	-	-
Trichloroethylene	0.5 ug/L	<0.5	-	-	<0.5	-	-
Trichlorofluoromethane	1 ug/L	<1.0	-	-	<1.0	-	-
1,3,5-Trimethylbenzene	0.5 ug/L	<0.5	-	-	<0.5	-	-
Vinyl chloride	0.5 ug/L	<0.5	-	-	<0.5	-	-
m,p-Xylenes	0.5 ug/L	<0.5	-	-	<0.5	-	-
o-Xylene	0.5 ug/L	<0.5	-	-	<0.5	-	-
Xylenes, total	0.5 ug/L	<0.5	-	-	<0.5	-	-
Toluene-d8	Surrogate	104%	-	-	104%	-	-
4-Bromofluorobenzene	Surrogate	110%	-	-	109%	-	-
Dibromofluoromethane	Surrogate	110%	-	-	109%	-	-

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Grizzly

	Client ID: Sample Date: Sample ID:	9578 Hwy. 15 18-Apr-23 10:30 2316293-05				-	-
	Matrix:	Ground Water					
	MDL/Units						
Microbiological Parameters							
E. coli	1 CFU/100mL	ND	-	1	-	-	-
Fecal Coliforms	1 CFU/100mL	ND	-	-	-	-	-
Total Coliforms	1 CFU/100mL	ND	-	-	-	-	-
General Inorganics		•			•	•	•
Ammonia as N	0.01 mg/L	<0.01	-	-	-	-	-
Phosphorus, total	0.01 mg/L	<0.01	-	-	-	-	-
Total Kjeldahl Nitrogen	0.1 mg/L	0.1	-	-	-	-	-
Anions	•						
Nitrate as N	0.1 mg/L	1.2	-	-	-	-	-
Nitrite as N	0.05 mg/L	<0.05	-	-	-	-	-

Report Date: 26-Apr-2023

Order Date: 19-Apr-2023

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Grizzly

Report Date: 26-Apr-2023

Order Date: 19-Apr-2023

Project Description: 22-0256

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions								
Nitrate as N	ND	0.1	mg/L					
Nitrite as N	ND	0.05	mg/L					
General Inorganics								
Ammonia as N	ND	0.01	mg/L					
Phosphorus, total	ND	0.01	mg/L					
Total Kjeldahl Nitrogen	ND	0.1	mg/L					
Microbiological Parameters								
E. coli	ND	1	CFU/100mL					
Fecal Coliforms	ND	1	CFU/100mL					
Total Coliforms	ND	1	CFU/100mL					
Volatiles								
Acetone	ND	5.0	ug/L					
Benzene	ND	0.5	ug/L					
Bromodichloromethane	ND	0.5	ug/L					
Bromoform	ND	0.5	ug/L					
Bromomethane	ND	0.5	ug/L					
Carbon Tetrachloride	ND	0.2	ug/L					
Chlorobenzene	ND	0.5	ug/L					
Chloroethane	ND	1.0	ug/L					
Chloroform	ND	0.5	ug/L					
Chloromethane	ND	3.0	ug/L					
Dibromochloromethane	ND	0.5	ug/L					
Dichlorodifluoromethane	ND	1.0	ug/L					
1,2-Dibromoethane	ND	0.2	ug/L					
1,2-Dichlorobenzene	ND	0.5	ug/L					
1,3-Dichlorobenzene	ND	0.5	ug/L					
1,4-Dichlorobenzene	ND	0.5	ug/L					
1,1-Dichloroethane	ND	0.5	ug/L					
1,2-Dichloroethane	ND	0.5	ug/L					
1,1-Dichloroethylene	ND	0.5	ug/L					
cis-1,2-Dichloroethylene	ND	0.5	ug/L					
trans-1,2-Dichloroethylene	ND	0.5	ug/L					
	ND	0.0	J, - -					

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Grizzly

Report Date: 26-Apr-2023

Order Date: 19-Apr-2023

Project Description: 22-0256

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
1,2-Dichloroethylene, total	ND	0.5	ug/L					
1,2-Dichloropropane	ND	0.5	ug/L					
cis-1,3-Dichloropropylene	ND	0.5	ug/L					
trans-1,3-Dichloropropylene	ND	0.5	ug/L					
1,3-Dichloropropene, total	ND	0.5	ug/L					
Ethylbenzene	ND	0.5	ug/L					
Hexane	ND	1.0	ug/L					
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L					
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L					
Methyl Isobutyl Ketone	ND	5.0	ug/L					
Methyl tert-butyl ether	ND	2.0	ug/L					
Methylene Chloride	ND	5.0	ug/L					
Styrene	ND	0.5	ug/L					
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L					
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L					
Tetrachloroethylene	ND	0.5	ug/L					
Toluene	ND	0.5	ug/L					
1,1,1-Trichloroethane	ND	0.5	ug/L					
1,1,2-Trichloroethane	ND	0.5	ug/L					
Trichloroethylene	ND	0.5	ug/L					
Trichlorofluoromethane	ND	1.0	ug/L					
1,3,5-Trimethylbenzene	ND	0.5	ug/L					
Vinyl chloride	ND	0.5	ug/L					
m,p-Xylenes	ND	0.5	ug/L					
o-Xylene	ND	0.5	ug/L					
Xylenes, total	ND	0.5	ug/L					
Surrogate: 4-Bromofluorobenzene	86.9		ug/L	109	50-140			
Surrogate: Dibromofluoromethane	86.6		ug/L	108	50-140			
Surrogate: Toluene-d8	84.2		ug/L	105	50-140			

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Grizzly

Report Date: 26-Apr-2023 Order Date: 19-Apr-2023

Project Description: 22-0256

Method Quality Control: Duplicate

Method Quality Control: Duplicate				_					
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Nitrate as N	0.21	0.1	mg/L	0.21			1.0	20	
Nitrite as N	ND	0.05	mg/L	ND			NC	20	
General Inorganics									
Ammonia as N	0.022	0.01	mg/L	0.021			4.3	18	
Phosphorus, total	4.87	0.02	mg/L	4.83			0.9	15	
Total Kjeldahl Nitrogen	5.87	0.2	mg/L	5.83			0.7	16	
Microbiological Parameters									
E. coli	ND	1	CFU/100mL	ND			NC	30	BAC12
Fecal Coliforms	ND	1	CFU/100mL	ND			NC	30	
Total Coliforms	ND	1	CFU/100mL	ND			NC	30	BAC12
Volatiles									
Acetone	ND	5.0	ug/L	ND			NC	30	
Benzene	ND	0.5	ug/L	ND			NC	30	
Bromodichloromethane	ND	0.5	ug/L	ND			NC	30	
Bromoform	ND	0.5	ug/L	ND			NC	30	
Bromomethane	ND	0.5	ug/L	ND			NC	30	
Carbon Tetrachloride	ND	0.2	ug/L	ND			NC	30	
Chlorobenzene	ND	0.5	ug/L	ND			NC	30	
Chloroethane	ND	1.0	ug/L	ND			NC	30	
Chloroform	ND	0.5	ug/L	ND			NC	30	
Chloromethane	ND	3.0	ug/L	ND			NC	30	
Dibromochloromethane	ND	0.5	ug/L	ND			NC	30	
Dichlorodifluoromethane	ND	1.0	ug/L	ND			NC	30	
1,2-Dibromoethane	ND	0.2	ug/L	ND			NC	30	
1,2-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,3-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,4-Dichlorobenzene	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Grizzly

Report Date: 26-Apr-2023

Order Date: 19-Apr-2023

Project Description: 22-0256

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
cis-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	ND			NC	30	
1,2-Dichloropropane	ND	0.5	ug/L	ND			NC	30	
cis-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
trans-1,3-Dichloropropylene	ND	0.5	ug/L	ND			NC	30	
Ethylbenzene	ND	0.5	ug/L	ND			NC	30	
Hexane	ND	1.0	ug/L	ND			NC	30	
Methyl Ethyl Ketone (2-Butanone)	ND	5.0	ug/L	ND			NC	30	
Methyl Butyl Ketone (2-Hexanone)	ND	10.0	ug/L	ND			NC	30	
Methyl Isobutyl Ketone	ND	5.0	ug/L	ND			NC	30	
Methyl tert-butyl ether	ND	2.0	ug/L	ND			NC	30	
Methylene Chloride	ND	5.0	ug/L	ND			NC	30	
Styrene	ND	0.5	ug/L	ND			NC	30	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	ND			NC	30	
Tetrachloroethylene	ND	0.5	ug/L	ND			NC	30	
Toluene	ND	0.5	ug/L	ND			NC	30	
1,1,1-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
1,1,2-Trichloroethane	ND	0.5	ug/L	ND			NC	30	
Trichloroethylene	ND	0.5	ug/L	ND			NC	30	
Trichlorofluoromethane	ND	1.0	ug/L	ND			NC	30	
1,3,5-Trimethylbenzene	ND	0.5	ug/L	ND			NC	30	
Vinyl chloride	ND	0.5	ug/L	ND			NC	30	
m,p-Xylenes	ND	0.5	ug/L	ND			NC	30	
o-Xylene	ND	0.5	ug/L	ND			NC	30	
Surrogate: 4-Bromofluorobenzene	87.2		ug/L		109	50-140			
Surrogate: Dibromofluoromethane	90.5		ug/L		113	50-140			
Surrogate: Toluene-d8	82.3		ug/L		103	50-140			

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Grizzly

Report Date: 26-Apr-2023

Order Date: 19-Apr-2023

Project Description: 22-0256

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Nitrate as N	1.25	0.1	mg/L	0.21	104	77-126			
Nitrite as N	0.946	0.05	mg/L	ND	94.6	82-115			
General Inorganics Ammonia as N	1.05	0.01	mg/L	0.021	103	81-124			
Phosphorus, total	0.943	0.01	mg/L	ND	94.3	80-120			
Total Kjeldahl Nitrogen	0.94	0.1	mg/L	ND	93.8	81-126			
Volatiles									
Acetone	108	5.0	ug/L	ND	108	50-140			
Benzene	38.5	0.5	ug/L	ND	96.4	60-130			
Bromodichloromethane	40.8	0.5	ug/L	ND	102	60-130			
Bromoform	38.0	0.5	ug/L	ND	95.0	60-130			
Bromomethane	36.7	0.5	ug/L	ND	91.8	50-140			
Carbon Tetrachloride	39.9	0.2	ug/L	ND	99.7	60-130			
Chlorobenzene	39.1	0.5	ug/L	ND	97.8	60-130			
Chloroethane	44.5	1.0	ug/L	ND	111	50-140			
Chloroform	30.9	0.5	ug/L	ND	77.4	60-130			
Chloromethane	49.8	3.0	ug/L	ND	124	50-140			
Dibromochloromethane	39.0	0.5	ug/L	ND	97.5	60-130			
Dichlorodifluoromethane	41.7	1.0	ug/L	ND	104	50-140			
1,2-Dibromoethane	40.6	0.2	ug/L	ND	101	60-130			
1,2-Dichlorobenzene	37.3	0.5	ug/L	ND	93.2	60-130			
1,3-Dichlorobenzene	36.7	0.5	ug/L	ND	91.7	60-130			
1,4-Dichlorobenzene	35.4	0.5	ug/L	ND	88.5	60-130			
1,1-Dichloroethane	40.9	0.5	ug/L	ND	102	60-130			
1,2-Dichloroethane	38.9	0.5	ug/L	ND	97.3	60-130			
1,1-Dichloroethylene	38.3	0.5	ug/L	ND	95.7	60-130			
cis-1,2-Dichloroethylene	32.6	0.5	ug/L	ND	81.6	60-130			
trans-1,2-Dichloroethylene	36.0	0.5	ug/L	ND	90.0	60-130			
1,2-Dichloropropane	37.7	0.5	ug/L	ND	94.2	60-130			
cis-1,3-Dichloropropylene	44.5	0.5	ug/L	ND	111	60-130			

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Grizzly

Report Date: 26-Apr-2023

Order Date: 19-Apr-2023

Project Description: 22-0256

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
trans-1,3-Dichloropropylene	47.3	0.5	ug/L	ND	118	60-130			
Ethylbenzene	38.3	0.5	ug/L	ND	95.7	60-130			
Hexane	41.6	1.0	ug/L	ND	104	60-130			
Methyl Ethyl Ketone (2-Butanone)	109	5.0	ug/L	ND	109	50-140			
Methyl Butyl Ketone (2-Hexanone)	118	10.0	ug/L	ND	118	50-140			
Methyl Isobutyl Ketone	106	5.0	ug/L	ND	106	50-140			
Methyl tert-butyl ether	124	2.0	ug/L	ND	124	50-140			
Methylene Chloride	38.5	5.0	ug/L	ND	96.2	60-130			
Styrene	36.4	0.5	ug/L	ND	91.0	60-130			
1,1,1,2-Tetrachloroethane	41.5	0.5	ug/L	ND	104	60-130			
1,1,2,2-Tetrachloroethane	45.6	0.5	ug/L	ND	114	60-130			
Tetrachloroethylene	39.0	0.5	ug/L	ND	97.4	60-130			
Toluene	39.0	0.5	ug/L	ND	97.6	60-130			
1,1,1-Trichloroethane	40.9	0.5	ug/L	ND	102	60-130			
1,1,2-Trichloroethane	40.0	0.5	ug/L	ND	100	60-130			
Trichloroethylene	37.1	0.5	ug/L	ND	92.7	60-130			
Trichlorofluoromethane	41.0	1.0	ug/L	ND	102	60-130			
1,3,5-Trimethylbenzene	37.6	0.5	ug/L	ND	94.1	60-130			
Vinyl chloride	35.6	0.5	ug/L	ND	89.1	50-140			
m,p-Xylenes	75.3	0.5	ug/L	ND	94.1	60-130			
o-Xylene	37.7	0.5	ug/L	ND	94.3	60-130			
Surrogate: 4-Bromofluorobenzene	87.0		ug/L		109	50-140			
Surrogate: Dibromofluoromethane	74.9		ug/L		93.7	50-140			
Surrogate: Toluene-d8	79.9		ug/L		99.9	50-140			

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Grizzly Project Description: 22-0256

Qualifier Notes:

Sample Qualifiers:

1: Confluent background colonies on filter: may interfere with target reactions and the analysts' ability to count E. coli & Total Coliform. The target colonies may be under-represented.

QC Qualifiers:

BAC12 Confluent background colonies on filter: may interfere with target reactions and the analysts' ability to count E. coli & Total Coliform. The target

colonies may be under-represented.

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Report Date: 26-Apr-2023

Order Date: 19-Apr-2023

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

McIntosh Perry Consulting Eng. (Carp)

115 Walgreen Rd. Carp, ON K0A 1L0 Attn: Rebecca Leduc

Client PO:

Project: CCO-22-0256 Custody: 70267 Report Date: 26-Apr-2023 Order Date: 20-Apr-2023

Order #: 2316390

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

 Paracel ID
 Client ID

 2316390-01
 TW4

 2316390-02
 220 Perth Rd

2316390-02 220 Feltin Rd 2316390-03 9477 HWY 15 2316390-04 9493 HWY 15

Approved By:

Dale Robertson, BSc Laboratory Director

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Report Date: 26-Apr-2023

Order Date: 20-Apr-2023

Client PO: Project Description: CCO-22-0256

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Ammonia, as N	EPA 351.2 - Auto Colour	24-Apr-23	25-Apr-23
Anions	EPA 300.1 - IC	20-Apr-23	20-Apr-23
E. coli	MOE E3407	20-Apr-23	20-Apr-23
Fecal Coliform	SM 9222D	20-Apr-23	20-Apr-23
Phosphorus, total, water	EPA 365.4 - Auto Colour, digestion	21-Apr-23	24-Apr-23
Total Coliform	MOE E3407	20-Apr-23	20-Apr-23
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	21-Apr-23	24-Apr-23

Certificate of Analysis

 Client:
 McIntosh Perry Consulting Eng. (Carp)
 Order Date: 20-Apr-2023

 Client PO:
 Project Description: CCO-22-0256

	Client ID:	TW4	220 Perth Rd	9477 HWY 15	9493 HWY 15
	Sample Date:	19-Apr-23 02:30	19-Apr-23 03:50	19-Apr-23 04:30	19-Apr-23 04:55
	Sample ID:	2316390-01	2316390-02	2316390-03	2316390-04
	MDL/Units	Ground Water	Ground Water	Ground Water	Ground Water
Microbiological Parameters					
E. coli	1 CFU/100mL	ND	ND	ND	ND
Total Coliforms	1 CFU/100mL	ND	9	1	ND
Fecal Coliforms	1 CFU/100mL	ND	ND	ND	ND
General Inorganics	•				•
Ammonia as N	0.01 mg/L	0.01	<0.01	<0.01	<0.01
Phosphorus, total	0.01 mg/L	<0.01	<0.01	<0.01	<0.01
Total Kjeldahl Nitrogen	0.1 mg/L	<0.1	<0.1	<0.1	<0.1
Anions		-			
Nitrate as N	0.1 mg/L	0.1	0.4	1.1	1.1
Nitrite as N	0.05 mg/L	<0.05	<0.05	<0.05	<0.05

Report Date: 26-Apr-2023

Report Date: 26-Apr-2023

Order Date: 20-Apr-2023

Project Description: CCO-22-0256

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp) Client PO:

Method Quality Control: Blank

		Reporting		Source		%REC		RPD	
Analyte	Result	Limit	Units	Result	%REC	Limit	RPD	Limit	Notes
Anions									
Nitrate as N	ND	0.1	mg/L						
Nitrite as N	ND	0.05	mg/L						
General Inorganics									
Ammonia as N	ND	0.01	mg/L						
Phosphorus, total	ND	0.01	mg/L						
Total Kjeldahl Nitrogen	ND	0.1	mg/L						
Microbiological Parameters									
E. coli	ND	1	CFU/100mL						
Total Coliforms	ND	1	CFU/100mL						
Fecal Coliforms	ND	1	CFU/100mL						

Report Date: 26-Apr-2023

Order Date: 20-Apr-2023

Project Description: CCO-22-0256

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)
Client PO:

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Nitrate as N	0.21	0.1	mg/L	0.21			1.0	20	
Nitrite as N	ND	0.05	mg/L	ND			NC	20	
General Inorganics									
Ammonia as N	0.022	0.01	mg/L	0.021			4.3	18	
Phosphorus, total	ND	0.01	mg/L	ND			NC	15	
Total Kjeldahl Nitrogen	ND	0.1	mg/L	ND			NC	16	
Microbiological Parameters									
E. coli	ND	1	CFU/100mL	ND			NC	30	
Total Coliforms	ND	1	CFU/100mL	ND			NC	30	
Fecal Coliforms	ND	1	CFU/100mL	ND			NC	30	

Report Date: 26-Apr-2023 Order Date: 20-Apr-2023

Project Description: CCO-22-0256

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp) Client PO:

Method Quality Control: Spike

Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
1.25	0.1	mg/L	0.21	104	77-126			
0.946	0.05	mg/L	ND	94.6	82-115			
1.05	0.01	mg/L	0.021	103	81-124			
0.955	0.01	mg/L	ND	95.5	80-120			
0.98	0.1	mg/L	ND	98.3	81-126			
	1.25 0.946 1.05 0.955	1.25 0.1 0.946 0.05 1.05 0.01 0.955 0.01	1.25 0.1 mg/L 0.946 0.05 mg/L 1.05 0.01 mg/L 0.955 0.01 mg/L	Result Limit Units Boother Result 1.25 0.1 mg/L 0.21 0.946 0.05 mg/L ND 1.05 0.01 mg/L 0.021 0.955 0.01 mg/L ND	Result Limit Units Socials Result %REC 1.25 0.1 mg/L 0.21 104 0.946 0.05 mg/L ND 94.6 1.05 0.01 mg/L 0.021 103 0.955 0.01 mg/L ND 95.5	Result Limit Units Socials Result %REC Limit 1.25 0.1 mg/L 0.21 104 77-126 0.946 0.05 mg/L ND 94.6 82-115 1.05 0.01 mg/L 0.021 103 81-124 0.955 0.01 mg/L ND 95.5 80-120	Result Limit Units Result %REC MILES RPD 1.25 0.1 mg/L 0.21 104 77-126 0.946 0.05 mg/L ND 94.6 82-115 1.05 0.01 mg/L 0.021 103 81-124 0.955 0.01 mg/L ND 95.5 80-120	Result Limit Units Result %REC Limit RPD Limit

Client: McIntosh Perry Consulting Eng. (Carp)

Order #: 2316390

Report Date: 26-Apr-2023 Order Date: 20-Apr-2023

Client PO: Project Description: CCO-22-0256

Qualifier Notes:

Sample Qualifiers:

Certificate of Analysis

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery. RPD: Relative percent difference.

NC: Not Calculated

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

McIntosh Perry Consulting Eng. (Carp)

115 Walgreen Rd. Carp, ON K0A 1L0 Attn: Monica Black

Client PO: Grizzly Subdivision

Project: 22-0256 Custody: 70175 Report Date: 6-Jun-2023 Order Date: 30-May-2023

Order #: 2322171

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID	Client ID
2322171-01	TW3
2322171-02	TW4
2322171-03	TW5

Approved By:

Dale Robertson, BSc Laboratory Director

Certificate of Analysis

Order #: 2322171

Report Date: 06-Jun-2023

 Client:
 McIntosh Perry Consulting Eng. (Carp)
 Order Date: 30-May-2023

 Client PO:
 Grizzly Subdivision
 Project Description: 22-0256

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Ammonia, as N	EPA 351.2 - Auto Colour	5-Jun-23	6-Jun-23
Anions	EPA 300.1 - IC	1-Jun-23	2-Jun-23
E. coli	MOE E3407	30-May-23	30-May-23
Fecal Coliform	SM 9222D	30-May-23	30-May-23
Phosphorus, total, water	EPA 365.4 - Auto Colour, digestion	31-May-23	31-May-23
Total Coliform	MOE E3407	30-May-23	30-May-23
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	31-May-23	31-May-23

Certificate of Analysis

Order #: 2322171

Report Date: 06-Jun-2023

Order Date: 30-May-2023

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Grizzly Subdivision Project Description: 22-0256

	Client ID:	TW3	TW4	TW5	-
	Sample Date:	29-May-23 12:32	29-May-23 02:45	29-May-23 04:39	-
	Sample ID:	2322171-01	2322171-02	2322171-03	-
	MDL/Units	Ground Water	Ground Water	Ground Water	-
Microbiological Parameters			•		
E. coli	1 CFU/100mL	ND	ND	ND [1]	-
Total Coliforms	1 CFU/100mL	ND	ND	ND [1]	-
Fecal Coliforms	1 CFU/100mL	ND	ND	ND	-
General Inorganics					
Organic Nitrogen	0.100 mg/L	0.225	0.136	<0.100	-
Ammonia as N	0.01 mg/L	<0.01	0.01	<0.01	-
Phosphorus, total	0.01 mg/L	<0.01	<0.01	<0.01	-
Total Kjeldahl Nitrogen	0.1 mg/L	0.2	0.1	<0.1	-
Anions					
Nitrate as N	0.1 mg/L	2.7	<0.1	0.4	-
Nitrite as N	0.05 mg/L	<0.05	<0.05	<0.05	-

Report Date: 06-Jun-2023 Order Date: 30-May-2023

Project Description: 22-0256

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)
Client PO: Grizzly Subdivision

Method Quality Control: Blank

Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
ND	0.1	mg/L						
ND	0.05	mg/L						
ND	0.01	mg/L						
ND	0.01	mg/L						
ND	0.1	mg/L						
ND	1	CFU/100mL						
ND	1	CFU/100mL						
ND	1	CFU/100mL						
	ND ND ND ND ND	ND	ND	ND	ND	ND	ND	Result Limit Units Result %REC Limit RPD Limit

Report Date: 06-Jun-2023 Order Date: 30-May-2023

Project Description: 22-0256

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Grizzly Subdivision

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Nitrate as N	0.86	0.1	mg/L	0.85			1.3	20	
Nitrite as N	ND	0.05	mg/L	ND			NC	20	
General Inorganics									
Ammonia as N	0.746	0.01	mg/L	0.771			3.2	18	
Phosphorus, total	7.57	0.04	mg/L	7.46			1.5	15	
Total Kjeldahl Nitrogen	67.1	4.0	mg/L	67.7			0.9	16	
Microbiological Parameters									
E. coli	ND	1	CFU/100mL	ND			NC	30	
Total Coliforms	ND	1	CFU/100mL	ND			NC	30	
Fecal Coliforms	ND	1	CFU/100mL	ND			NC	30	

Report Date: 06-Jun-2023 Order Date: 30-May-2023

Project Description: 22-0256

Certificate of Analysis

Client: McIntosh Perry Consulting Eng. (Carp)

Client PO: Grizzly Subdivision

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Nitrate as N	1.91	0.1	mg/L	0.85	105	77-126			
Nitrite as N	0.965	0.05	mg/L	ND	96.5	82-115			
General Inorganics									
Ammonia as N	1.80	0.01	mg/L	0.771	103	81-124			
Phosphorus, total	1.03	0.01	mg/L	ND	103	80-120			
Total Kjeldahl Nitrogen	0.93	0.1	mg/L	ND	92.5	81-126			

Report Date: 06-Jun-2023 Order Date: 30-May-2023

Project Description: 22-0256

Certificate of Analysis

Client: McIntosh Perry

Client: McIntosh Perry Consulting Eng. (Carp)
Client PO: Grizzly Subdivision

Qualifier Notes:

Sample Qualifiers:

1: Greater than 200 CFU of background colonies present. This may interfere with target growth and ability of the analyst to count E. coli & Total Coliform. The target colonies may be under-represented.

Sample Data Revisions

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Egis Canada Ltd. (Carp)

115 Walgreen Rd. Carp, ON K0A 1L0 Attn: Monica Black

Client PO:

Project: 22-0256

Custody: 73001

Report Date: 7-Feb-2024

Order Date: 2-Feb-2024

Order #: 2405466

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID 2405466-01 TW2

2405466-01 TW2 2405466-02 TW3

2405466-03 9578 Hwy 15

Approved By:

Mark Froto

Mark Foto, M.Sc.

Lab Supervisor

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Client PO:

Report Date: 07-Feb-2024 Order Date: 2-Feb-2024

Project Description: 22-0256

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date	
Alkalinity, total to pH 4.5	EPA 310.1 - Titration to pH 4.5	2-Feb-24	2-Feb-24	
Ammonia, as N	EPA 351.2 - Auto Colour	6-Feb-24	6-Feb-24	
Anions	EPA 300.1 - IC	5-Feb-24	6-Feb-24	
Colour	SM2120 - Spectrophotometric	2-Feb-24	2-Feb-24	
Conductivity	EPA 9050A- probe @25 °C	2-Feb-24	2-Feb-24	
Dissolved Organic Carbon	MOE 3247B - Combustion IR	6-Feb-24	7-Feb-24	
E. coli	MOE E3407	2-Feb-24	2-Feb-24	
Fecal Coliform	SM 9222D	2-Feb-24	2-Feb-24	
Mercury by CVAA	EPA 245.2 - Cold Vapour AA	5-Feb-24	5-Feb-24	
Metals, ICP-MS	EPA 200.8 - ICP-MS	5-Feb-24	6-Feb-24	
pH	EPA 150.1 - pH probe @25 °C	2-Feb-24	2-Feb-24	
Phenolics	EPA 420.2 - Auto Colour, 4AAP	5-Feb-24	6-Feb-24	
Phosphorus, total, water	EPA 365.4 - Auto Colour, digestion	5-Feb-24	6-Feb-24	
Hardness	Hardness as CaCO3	5-Feb-24	6-Feb-24	
Sulphide	SM 4500SE - Colourimetric	6-Feb-24	6-Feb-24	
Tannin/Lignin	SM 5550B - Colourimetric	5-Feb-24	5-Feb-24	
Total Coliform	MOE E3407	2-Feb-24	2-Feb-24	
Total Dissolved Solids	SM 2540C - gravimetric, filtration	2-Feb-24	3-Feb-24	
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	5-Feb-24	6-Feb-24	
Turbidity	SM 2130B - Turbidity meter	2-Feb-24	2-Feb-24	

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Client PO: Project Description: 22-0256

	Client ID:	TW2	TW3	9578 Hwy 15	-		
	Sample Date:	01-Feb-24 12:00	01-Feb-24 15:20	01-Feb-24 10:00	-	_	-
	Sample ID:	2405466-01	2405466-02	2405466-03	-		
	Matrix:	Ground Water	Ground Water	Ground Water	-		
	MDL/Units						
Microbiological Parameters	<u> </u>		!	!	!	!	
E. coli	1 CFU/100mL	ND	ND	ND	-	-	-
Total Coliforms	1 CFU/100mL	ND	ND	ND	-	-	-
Fecal Coliforms	1 CFU/100mL	ND	ND	ND	-	-	-
General Inorganics	-			•	•	•	
Alkalinity, total	5 mg/L	-	-	296	-	-	-
Ammonia as N	0.01 mg/L	<0.01	<0.01	<0.01	-	-	-
Dissolved Organic Carbon	0.5 mg/L	-	-	4.1	-	-	-
Colour	2 TCU	-	-	6	-	-	-
Conductivity	5 uS/cm	-	-	2900	-	-	-
Hardness	1 mg/L	-	-	407	-	-	-
рН	0.1 pH Units	-	-	7.5	-	-	-
Phenolics	0.001 mg/L	-	-	<0.001	-	-	-
Phosphorus, total	0.01 mg/L	<0.01	<0.01	-	-	-	-
Total Dissolved Solids	10 mg/L	-	-	1540	-	-	-
Sulphide	0.02 mg/L	-	-	<0.02	-	-	-
Tannin & Lignin	0.1 mg/L	-	-	<0.1	-	-	-
Total Kjeldahl Nitrogen	0.1 mg/L	0.1	0.2	0.3	-	-	-
Turbidity	0.1 NTU	-	-	0.1	-	-	-
Anions						•	
Chloride	1 mg/L	-	-	774	-	-	-
Fluoride	0.1 mg/L	-	-	0.1	-	-	-
Nitrate as N	0.1 mg/L	0.4	1.3	1.7	-	-	-
Nitrite as N	0.05 mg/L	<0.05	<0.05	<0.05	-	-	-
Phosphate as P	0.5 mg/L	-	-	<0.5	-	-	-
Sulphate	1 mg/L	-	-	39	-	-	-

Report Date: 07-Feb-2024

Order Date: 2-Feb-2024

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Client PO:

Report Date: 07-Feb-2024

Order Date: 2-Feb-2024

Project Description: 22-0256

	Client ID:	TW2	TW3	9578 Hwy 15	_		
	Sample Date:	01-Feb-24 12:00	01-Feb-24 15:20	01-Feb-24 10:00	-	-	_
	Sample ID:	2405466-01	2405466-02	2405466-03	-		
	Matrix:	Ground Water	Ground Water	Ground Water	-		
	MDL/Units						
Metals				•			•
Mercury	0.1 ug/L	-	-	<0.1	-	-	-
Aluminum	1 ug/L	-	-	1	-	-	-
Antimony	0.5 ug/L	-	-	<0.5	-	-	-
Arsenic	1 ug/L	-	-	<1	-	-	-
Barium	1 ug/L	-	-	394	-	-	-
Beryllium	0.5 ug/L	-	-	<0.5	-	-	-
Boron	10 ug/L	-	-	21	-	-	-
Cadmium	0.1 ug/L	-	-	<0.1	-	-	-
Calcium	100 ug/L	-	-	115000	-	-	-
Chromium	1 ug/L	-	-	<1	-	-	-
Cobalt	0.5 ug/L	-	-	<0.5	-	-	-
Copper	0.5 ug/L	-	-	77.4	-	-	-
Iron	100 ug/L	-	-	<100	-	-	-
Lead	0.1 ug/L	-	-	<0.1	-	-	-
Magnesium	200 ug/L	-	-	28800	-	-	-
Manganese	5 ug/L	-	-	10	-	-	-
Molybdenum	0.5 ug/L	-	-	<0.5	-	-	-
Nickel	1 ug/L	-	-	1	-	-	-
Potassium	100 ug/L	-	-	2300	-	-	-
Selenium	1 ug/L	-	-	<1	-	-	-
Silver	0.1 ug/L	-	-	<0.1	-	-	-
Sodium	200 ug/L	-	-	409000	-	-	-
Strontium	10 ug/L	-	-	692	-	-	-
Thallium	0.1 ug/L	-	-	<0.1	-	-	-
Tin	5 ug/L	-	-	<5	-	-	-

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

0.1 ug/L

0.5 ug/L

5 ug/L

Order Date: 2-Feb-2024

Project Description: 22-0256

Report Date: 07-Feb-2024

Client PO:

Uranium

Zinc

Vanadium

Client ID: TW2 TW3 9578 Hwy 15 01-Feb-24 12:00 01-Feb-24 15:20 01-Feb-24 10:00 Sample Date: Sample ID: 2405466-01 2405466-02 2405466-03 Matrix: **Ground Water Ground Water Ground Water** MDL/Units Metals Titanium 5 ug/L <5 10 ug/L <10 Tungsten

1.4

<0.5

11

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Report Date: 07-Feb-2024 Order Date: 2-Feb-2024

Client PO:

Project Description: 22-0256

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions								
Chloride	ND	1	mg/L					
Fluoride	ND	0.1	mg/L					
Nitrate as N	ND	0.1	mg/L					
Nitrite as N	ND	0.05	mg/L					
Phosphate as P	ND	0.5	mg/L					
Sulphate	ND	1	mg/L					
General Inorganics								
Alkalinity, total	ND	5	mg/L					
Ammonia as N	ND	0.01	mg/L					
Dissolved Organic Carbon	ND	0.5	mg/L					
Colour	ND	2	TCU					
Conductivity	ND	5	uS/cm					
Phenolics	ND	0.001	mg/L					
Phosphorus, total	ND	0.01	mg/L					
Total Dissolved Solids	ND	10	mg/L					
Sulphide	ND	0.02	mg/L					
Tannin & Lignin	ND	0.1	mg/L					
Total Kjeldahl Nitrogen	ND	0.1	mg/L					
Turbidity	ND	0.1	NTU					
Metals								
Mercury	ND	0.1	ug/L					
Aluminum	ND	1	ug/L					
Antimony	ND	0.5	ug/L					
Arsenic	ND	1	ug/L					
Barium	ND	1	ug/L					
Beryllium	ND	0.5	ug/L					
Boron	ND	10	ug/L					
Cadmium	ND	0.1	ug/L					
Calcium	ND	100	ug/L					
Chromium	ND	1	ug/L					
Cobalt	ND	0.5	ug/L					
Copper	ND	0.5	ug/L					

Report Date: 07-Feb-2024

Client: Egis Canada Ltd. (Carp)

Certificate of Analysis

Order Date: 2-Feb-2024

Client PO:

Project Description: 22-0256

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Iron	ND	100	ug/L					
Lead	ND	0.1	ug/L					
Magnesium	ND	200	ug/L					
Manganese	ND	5	ug/L					
Molybdenum	ND	0.5	ug/L					
Nickel	ND	1	ug/L					
Potassium	ND	100	ug/L					
Selenium	ND	1	ug/L					
Silver	ND	0.1	ug/L					
Sodium	ND	200	ug/L					
Strontium	ND	10	ug/L					
Thallium	ND	0.1	ug/L					
Tin	ND	5	ug/L					
Titanium	ND	5	ug/L					
Tungsten	ND	10	ug/L					
Uranium	ND	0.1	ug/L					
Vanadium	ND	0.5	ug/L					
Zinc	ND	5	ug/L					
Microbiological Parameters								
E. coli	ND	1	CFU/100mL					
Total Coliforms	ND	1	CFU/100mL					
Fecal Coliforms	ND	1	CFU/100mL					

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Report Date: 07-Feb-2024
Order Date: 2-Feb-2024
Project Description: 22-0256

Client PO:

Method Quality Control: Dunlicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	772	5	mg/L	774			0.2	20	
Fluoride	0.10	0.1	mg/L	0.10			1.7	20	
Nitrate as N	1.63	0.1	mg/L	1.68			3.5	20	
Nitrite as N	ND	0.05	mg/L	ND			NC	20	
Phosphate as P	ND	0.5	mg/L	ND			NC	20	
Sulphate	38.6	1	mg/L	38.7			0.2	10	
General Inorganics									
Alkalinity, total	384	5	mg/L	388			1.0	14	
Ammonia as N	ND	0.01	mg/L	ND			NC	18	
Dissolved Organic Carbon	1.5	0.5	mg/L	1.6			4.2	37	
Colour	6	2	TCU	6			0.0	12	
Conductivity	334	5	uS/cm	325			2.7	5	
рН	7.9	0.1	pH Units	7.9			0.1	3.3	
Phenolics	ND	0.001	mg/L	ND			NC	10	
Phosphorus, total	ND	0.01	mg/L	ND			NC	15	
Total Dissolved Solids	100	10	mg/L	100			0.0	10	
Sulphide	ND	0.02	mg/L	ND			NC	10	
Tannin & Lignin	ND	0.1	mg/L	ND			NC	11	
Total Kjeldahl Nitrogen	ND	0.1	mg/L	0.11			NC	16	
Turbidity	0.1	0.1	NTU	0.1			9.5	10	
Metals									
Mercury	ND	0.1	ug/L	ND			NC	20	
Aluminum	9.1	1	ug/L	9.1			0.2	20	
Antimony	ND	0.5	ug/L	ND			NC	20	
Arsenic	ND	1	ug/L	ND			NC	20	
Barium	21.9	1	ug/L	21.1			4.1	20	
Beryllium	ND	0.5	ug/L	ND			NC	20	
Boron	19	10	ug/L	18			2.9	20	
Cadmium	ND	0.1	ug/L	ND			NC	20	
Calcium	31000	100	ug/L	31400			1.4	20	

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Project Description: 22-0256

Report Date: 07-Feb-2024

Order Date: 2-Feb-2024

Client PO:

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Chromium	ND	1	ug/L	ND			NC	20	
Cobalt	ND	0.5	ug/L	ND			NC	20	
Copper	1.06	0.5	ug/L	1.24			15.5	20	
Iron	ND	100	ug/L	ND			NC	20	
Lead	ND	0.1	ug/L	ND			NC	20	
Magnesium	8130	200	ug/L	8130			0.1	20	
Manganese	ND	5	ug/L	ND			NC	20	
Molybdenum	1.02	0.5	ug/L	1.47			NC	20	
Nickel	ND	1	ug/L	1.0			NC	20	
Potassium	1420	100	ug/L	1470			3.1	20	
Selenium	ND	1	ug/L	ND			NC	20	
Silver	ND	0.1	ug/L	ND			NC	20	
Sodium	15000	200	ug/L	15900			5.8	20	
Strontium	176	10	ug/L	169			3.8	20	
Thallium	ND	0.1	ug/L	ND			NC	20	
Tin	ND	5	ug/L	ND			NC	20	
Titanium	ND	5	ug/L	ND			NC	20	
Tungsten	ND	10	ug/L	ND			NC	20	
Uranium	ND	0.1	ug/L	ND			NC	20	
Vanadium	ND	0.5	ug/L	ND			NC	20	
Zinc	ND	5	ug/L	ND			NC	20	
Microbiological Parameters									
E. coli	ND	1	CFU/100mL	ND			NC	30	
Total Coliforms	ND	1	CFU/100mL	ND			NC	30	
Fecal Coliforms	ND	1	CFU/100mL	ND			NC	30	

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Client PO:

Report Date: 07-Feb-2024

Order Date: 2-Feb-2024

Project Description: 22-0256

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	10.4	1	mg/L	ND	104	78-114			
Fluoride	1.04	0.1	mg/L	0.10	94.4	70-130			
Nitrate as N	2.59	0.1	mg/L	1.68	90.7	77-126			
Nitrite as N	0.971	0.05	mg/L	ND	97.1	82-115			
Phosphate as P	5.15	0.5	mg/L	ND	103	76-130			
Sulphate	47.8	1	mg/L	38.7	91.8	74-126			
General Inorganics									
Ammonia as N	1.04	0.01	mg/L	ND	104	81-124			
Dissolved Organic Carbon	11.5	0.5	mg/L	1.4	100	60-133			
Phenolics	0.027	0.001	mg/L	ND	106	67-133			
Phosphorus, total	1.01	0.01	mg/L	ND	101	80-120			
Total Dissolved Solids	96.0	10	mg/L	ND	96.0	75-125			
Sulphide	0.51	0.02	mg/L	ND	102	79-115			
Tannin & Lignin	1.0	0.1	mg/L	ND	99.9	71-113			
Total Kjeldahl Nitrogen	1.11	0.1	mg/L	0.11	100	81-126			
Metals									
Mercury	2.72	0.1	ug/L	ND	90.8	70-130			
Aluminum	56.0	1	ug/L	9.1	93.8	80-120			
Arsenic	50.5	1	ug/L	ND	100	80-120			
Barium	66.6	1	ug/L	21.1	91.1	80-120			
Beryllium	48.3	0.5	ug/L	ND	96.6	80-120			
Boron	60	10	ug/L	18	83.8	80-120			
Cadmium	47.7	0.1	ug/L	ND	95.3	80-120			
Calcium	38000	100	ug/L	31400	66.0	80-120			QM-07
Chromium	47.9	1	ug/L	ND	95.2	80-120			
Cobalt	47.0	0.5	ug/L	ND	94.0	80-120			
Copper	45.2	0.5	ug/L	1.24	88.0	80-120			
Iron	2220	100	ug/L	ND	87.0	80-120			
Lead	43.2	0.1	ug/L	ND	86.5	80-120			
Magnesium	15800	200	ug/L	8130	77.2	80-120			QM-07

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Order Date: 2-Feb-2024

Project Description: 22-0256

Report Date: 07-Feb-2024

Client PO:

Method Quality Control: Spike

mourou quanty control opino									
Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Manganese	49.3	5	ug/L	ND	95.2	80-120			
Molybdenum	43.3	0.5	ug/L	1.47	83.7	80-120			
Nickel	46.6	1	ug/L	1.0	91.2	80-120			
Potassium	10600	100	ug/L	1470	91.0	80-120			
Selenium	45.4	1	ug/L	ND	90.6	80-120			
Silver	47.4	0.1	ug/L	ND	94.8	80-120			
Sodium	23200	200	ug/L	15900	72.7	80-120			QM-07
Strontium	211	10	ug/L	169	83.7	80-120			
Thallium	43.6	0.1	ug/L	ND	87.1	80-120			
Tin	44.4	5	ug/L	ND	88.8	80-120			
Titanium	50.8	5	ug/L	ND	101	80-120			
Tungsten	41.0	10	ug/L	ND	81.6	80-120			
Uranium	45.0	0.1	ug/L	ND	89.9	80-120			
Vanadium	48.7	0.5	ug/L	ND	97.2	80-120			
Zinc	48	5	ug/L	5	86.3	80-120			

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Order Date: 2-Feb-2024

Client PO: Project Description: 22-0256

Qualifier Notes:

Sample Qualifiers : QC Qualifiers:

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Any use of these results implies your agreement that our total liability in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Egis Canada Ltd. (Carp)

115 Walgreen Rd. Carp, ON K0A 1L0 Attn: Monica Black

Client PO:

Project: 22-0256

Custody: 73637

Report Date: 14-Mar-2024

Order Date: 7-Mar-2024

Order #: 2410428

This Certificate of Analysis contains analytical data applicable to the following samples as

submitted:

 Paracel ID
 Client ID

 2410428-01
 TW4

 2410428-02
 TW5

 2410428-03
 198 Perth

 2410428-04
 216 Church

Approved By:

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Client PO:

Report Date: 14-Mar-2024

Order Date: 7-Mar-2024

Project Description: 22-0256

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Alkalinity, total to pH 4.5	EPA 310.1 - Titration to pH 4.5	8-Mar-24	8-Mar-24
Ammonia, as N	EPA 351.2 - Auto Colour	11-Mar-24	11-Mar-24
Anions	EPA 300.1 - IC	11-Mar-24	11-Mar-24
Colour	SM2120 - Spectrophotometric	8-Mar-24	8-Mar-24
Conductivity	EPA 9050A- probe @25 °C	8-Mar-24	8-Mar-24
Dissolved Organic Carbon	MOE 3247B - Combustion IR	11-Mar-24	11-Mar-24
E. coli	MOE E3407	8-Mar-24	8-Mar-24
Fecal Coliform	SM 9222D	8-Mar-24	8-Mar-24
Mercury by CVAA	EPA 245.2 - Cold Vapour AA	11-Mar-24	11-Mar-24
Metals, ICP-MS	EPA 200.8 - ICP-MS	11-Mar-24	11-Mar-24
рН	EPA 150.1 - pH probe @25 °C	8-Mar-24	8-Mar-24
Phenolics	EPA 420.2 - Auto Colour, 4AAP	8-Mar-24	8-Mar-24
Phosphorus, total, water	EPA 365.4 - Auto Colour, digestion	11-Mar-24	12-Mar-24
Hardness	Hardness as CaCO3	11-Mar-24	11-Mar-24
Sulphide	SM 4500SE - Colourimetric	12-Mar-24	12-Mar-24
Tannin/Lignin	SM 5550B - Colourimetric	11-Mar-24	11-Mar-24
Total Coliform	MOE E3407	8-Mar-24	8-Mar-24
Total Dissolved Solids	SM 2540C - gravimetric, filtration	8-Mar-24	11-Mar-24
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	11-Mar-24	12-Mar-24
Turbidity	SM 2130B - Turbidity meter	8-Mar-24	8-Mar-24

Report Date: 14-Mar-2024

Order Date: 7-Mar-2024

Project Description: 22-0256

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Client PO:

Summary of Criteria Exceedances

(If this page is blank then there are no exceedances) Only those criteria that a sample exceeds will be highlighted in

Regulatory Comparison:

Paracel Laboratories has provided regulatory guidelines on this report for informational purposes only and makes no representations or warranties that the data is accurate or reflects the current regulatory values. The user is advised to consult with the appropriate official regulations to evaluate compliance. Sample results that are highlighted have exceeded the selected regulatory limit. Calculated uncertainty estimations have not been applied for determining regulatory exceedances.

Sample	Analyte	MDL / Units	Result	ODWS - Aesthetic/Operational	ODWS - Maximum Allowable Concentration
TW5	Total Coliforms	1 CFU/100mL	1	-	0 CFU/100mL
198 Perth	Total Coliforms	1 CFU/100mL	13	-	0 CFU/100mL
198 Perth	Sodium	0.200 mg/L	30.1	200 mg/L	20 mg/L
216 Church	Total Dissolved Solids	10 mg/L	704	500 mg/L	-
216 Church	Sodium	0.200 mg/L	91.4	200 mg/L	20 mg/L

Report Date: 14-Mar-2024

Order Date: 7-Mar-2024

Client: Egis Canada Ltd. (Carp)

Certificate of Analysis

Project Description: 22-0256

Client PO:

	Client ID:	TW4	TW5	198 Perth	216 Church	Crite	eria:
	Sample Date: Sample ID: Matrix:	07-Mar-24 15:25 2410428-01 Ground Water	07-Mar-24 09:45 2410428-02 Ground Water	07-Mar-24 12:25 2410428-03 Ground Water	07-Mar-24 15:00 2410428-04 Ground Water	ODWS - Aesthetic/Operation al	ODWS - Maximum Allowable Concentration
	MDL/Units						
Microbiological Parameters					!		
E. coli	1 CFU/100mL	ND	ND	ND	ND	-	0 CFU/100mL
Total Coliforms	1 CFU/100mL	ND	1	13	ND	-	0 CFU/100mL
Fecal Coliforms	1 CFU/100mL	ND	ND	1	ND	-	-
General Inorganics						•	·
Alkalinity, total	5 mg/L	-	-	217	342	-	-
Ammonia as N	0.01 mg/L	<0.01	<0.01	<0.01	0.04	-	-
Dissolved Organic Carbon	0.5 mg/L	-	-	1.4	3.2	5 mg/L	-
Colour	2 TCU	-	-	2	5	-	-
Conductivity	5 uS/cm	-	-	594	1310	-	-
Hardness	1 mg/L	-	-	197	368	500 mg/L	-
рН	0.1 pH Units	-	-	7.4	7.2	5.00 - 9.00 pH Units	5.00 - 9.00 pH Units
Phenolics	0.001 mg/L	-	-	<0.001	<0.001	-	-
Phosphorus, total	0.01 mg/L	<0.01	<0.01	-	-	-	-
Total Dissolved Solids	10 mg/L	-	-	286	704	500 mg/L	-
Sulphide	0.02 mg/L	-	-	<0.02	<0.02	0.05 mg/L	-
Tannin & Lignin	0.1 mg/L	-	-	<0.1	<0.1	-	-
Total Kjeldahl Nitrogen	0.1 mg/L	0.1	0.1	0.1	0.3	-	-
Turbidity	0.1 NTU	-	-	0.4	0.2	-	-
Anions							<u>'</u>
Chloride	1 mg/L	-	•	52	196	250 mg/L	-
Fluoride	0.1 mg/L	-	-	<0.1	<0.1	-	1.5 mg/L
Nitrate as N	0.1 mg/L	<0.1	0.9	0.5	2.8	-	10 mg/L
Nitrite as N	0.05 mg/L	<0.05	<0.05	<0.05	<0.05	-	1 mg/L
Phosphate as P	0.5 mg/L	-	-	<0.5	<0.5	-	-
Sulphate	1 mg/L	-	-	12	47	500 mg/L	-

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Client PO:

Report Date: 14-Mar-2024

Order Date: 7-Mar-2024

Project Description: 22-0256

	Client ID:	TW4	TW5	198 Perth	216 Church	Crite	eria:
	Sample Date:	07-Mar-24 15:25	07-Mar-24 09:45	07-Mar-24 12:25	07-Mar-24 15:00	ODWS -	ODWS - Maximum
	Sample ID:	2410428-01 Ground Water	2410428-02 Ground Water	2410428-03 Ground Water	2410428-04 Ground Water	Aesthetic/Operation al	Allowable Concentration
	Matrix:	Olouliu Water	Ground Water	Ground Water	Ground Water	u'	Concentration
Metals	MDL/Units						
Mercury	0.0001 mg/L			<0.0001	<0.0001		0.001 mg/L
Aluminum	0.000 mg/L			0.003	0.003		
	0.0001 mg/L	-	-			0.1 mg/L	- 0.006 mg/l
Antimony	-	-	-	<0.0005	<0.0005	-	0.006 mg/L
Arsenic	0.001 mg/L	-	-	<0.001	<0.001	-	0.01 mg/L
Barium	0.001 mg/L	-	-	0.127	0.234	-	1 mg/L
Beryllium	0.0005 mg/L	-	-	<0.0005	<0.0005	-	
Boron	0.010 mg/L	-	-	0.013	0.038	-	5 mg/L
Cadmium	0.0001 mg/L	-	-	<0.0001	<0.0001	-	0.005 mg/L
Calcium	0.100 mg/L	-	-	51.3	98.2	-	-
Chromium	0.001 mg/L	-	-	<0.001	<0.001	-	0.05 mg/L
Cobalt	0.0005 mg/L	-	-	<0.0005	<0.0005	-	-
Copper	0.0005 mg/L	-	-	0.0755	0.0528	1 mg/L	-
Iron	0.100 mg/L	-	-	<0.100	<0.100	0.3 mg/L	-
Lead	0.0001 mg/L	-	-	0.0004	0.0047	-	0.01 mg/L
Magnesium	0.200 mg/L	-	-	16.8	29.9	-	-
Manganese	0.005 mg/L	-	-	0.007	0.022	0.05 mg/L	-
Molybdenum	0.0005 mg/L	-	-	0.0009	<0.0005	-	-
Nickel	0.001 mg/L	-	-	0.003	0.003	-	-
Potassium	0.100 mg/L	-	-	1.30	5.46	-	-
Selenium	0.001 mg/L	-	-	<0.001	0.001	-	0.05 mg/L
Silver	0.0001 mg/L	-	-	<0.0001	<0.0001	-	-
Sodium	0.200 mg/L	-	-	30.1	91.4	200 mg/L	20 mg/L
Strontium	0.010 mg/L	-	-	0.155	0.423	-	-
Thallium	0.0001 mg/L	-	-	<0.0001	<0.0001	-	-
Tin	0.005 mg/L	-	-	<0.005	<0.005	-	-

Certificate of Analysis

Report Date: 14-Mar-2024 Order Date: 7-Mar-2024

Client: Egis Canada Ltd. (Carp)

Client PO:

Project Description: 22-0256

	Client ID:	TW4	TW5	198 Perth	216 Church	Crite	eria:
	Sample Date: Sample ID: Matrix:		07-Mar-24 09:45 2410428-02 Ground Water	07-Mar-24 12:25 2410428-03 Ground Water	07-Mar-24 15:00 2410428-04 Ground Water	ODWS - Aesthetic/Operation al	ODWS - Maximum Allowable Concentration
	MDL/Units						
Metals	•				•		•
Titanium	0.005 mg/L	-	•	<0.005	<0.005	-	-
Tungsten	0.010 mg/L	-	-	<0.010	<0.010	-	-
Uranium	0.0001 mg/L	-	-	0.0008	0.0015	-	0.02 mg/L
Vanadium	0.0005 mg/L	-	-	<0.0005	<0.0005	-	-
Zinc	0.005 mg/L	-	-	0.095	0.058	5 mg/L	-

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Report Date: 14-Mar-2024 Order Date: 7-Mar-2024

Client PO:

Project Description: 22-0256

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions								
Chloride	ND	1	mg/L					
Fluoride	ND	0.1	mg/L					
Nitrate as N	ND	0.1	mg/L					
Nitrite as N	ND	0.05	mg/L					
Phosphate as P	ND	0.5	mg/L					
Sulphate	ND	1	mg/L					
General Inorganics								
Alkalinity, total	ND	5	mg/L					
Ammonia as N	ND	0.01	mg/L					
Dissolved Organic Carbon	ND	0.5	mg/L					
Colour	ND	2	TCU					
Conductivity	ND	5	uS/cm					
Phenolics	ND	0.001	mg/L					
Phosphorus, total	ND	0.01	mg/L					
Total Dissolved Solids	ND	10	mg/L					
Sulphide	ND	0.02	mg/L					
Tannin & Lignin	ND	0.1	mg/L					
Total Kjeldahl Nitrogen	ND	0.1	mg/L					
Turbidity	ND	0.1	NTU					
Metals								
Mercury	ND	0.0001	mg/L					
Aluminum	ND	0.001	mg/L					
Antimony	ND	0.0005	mg/L					
Arsenic	ND	0.001	mg/L					
Barium	ND	0.001	mg/L					
Beryllium	ND	0.0005	mg/L					
Boron	ND	0.010	mg/L					
Cadmium	ND	0.0001	mg/L					
Calcium	ND	0.100	mg/L					
Chromium	ND	0.001	mg/L					
Cobalt	ND	0.0005	mg/L					
Copper	ND	0.0005	mg/L					

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Project Description: 22-0256

Report Date: 14-Mar-2024

Order Date: 7-Mar-2024

Client PO:

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Iron	ND	0.100	mg/L					
Lead	ND	0.0001	mg/L					
Magnesium	ND	0.200	mg/L					
Manganese	ND	0.005	mg/L					
Molybdenum	ND	0.0005	mg/L					
Nickel	ND	0.001	mg/L					
Potassium	ND	0.100	mg/L					
Selenium	ND	0.001	mg/L					
Silver	ND	0.0001	mg/L					
Sodium	ND	0.200	mg/L					
Strontium	ND	0.010	mg/L					
Thallium	ND	0.0001	mg/L					
Tin	ND	0.005	mg/L					
Titanium	ND	0.005	mg/L					
Tungsten	ND	0.010	mg/L					
Uranium	ND	0.0001	mg/L					
Vanadium	ND	0.0005	mg/L					
Zinc	ND	0.005	mg/L					
Microbiological Parameters								
E. coli	ND	1	CFU/100mL					
Total Coliforms	ND	1	CFU/100mL					
Fecal Coliforms	ND	1	CFU/100mL					

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Report Date: 14-Mar-2024

Order Date: 7-Mar-2024

Client PO: Project Description: 22-0256

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	106	1	mg/L	106			0.0	20	
Fluoride	0.37	0.1	mg/L	0.38			3.4	20	
Nitrate as N	0.19	0.1	mg/L	0.20			6.8	20	
Nitrite as N	ND	0.05	mg/L	ND			NC	20	
Phosphate as P	ND	0.5	mg/L	ND			NC	20	
Sulphate	60.0	1	mg/L	60.0			0.0	10	
General Inorganics									
Alkalinity, total	317	5	mg/L	316			0.1	14	
Ammonia as N	0.037	0.01	mg/L	0.046			NC	18	
Dissolved Organic Carbon	1.5	0.5	mg/L	1.4			7.5	37	
Colour	ND	2	TCU	ND			NC	12	
Conductivity	324	5	uS/cm	328			1.3	5	
pH	7.8	0.1	pH Units	7.9			0.5	3.3	
Phenolics	ND	0.001	mg/L	ND			NC	10	
Phosphorus, total	0.023	0.01	mg/L	0.034			NC	15	
Total Dissolved Solids	266	10	mg/L	286			7.3	10	
Sulphide	ND	0.02	mg/L	ND			NC	10	
Tannin & Lignin	ND	0.1	mg/L	ND			NC	11	
Total Kjeldahl Nitrogen	0.44	0.1	mg/L	0.43			2.6	16	
Turbidity	ND	0.1	NTU	ND			NC	10	
Metals									
Mercury	ND	0.0001	mg/L	ND			NC	20	
Aluminum	0.0147	0.001	mg/L	0.0151			2.9	20	
Antimony	ND	0.0005	mg/L	ND			NC	20	
Arsenic	ND	0.001	mg/L	ND			NC	20	
Barium	0.0480	0.001	mg/L	0.0477			0.6	20	
Beryllium	ND	0.0005	mg/L	ND			NC	20	
Boron	0.127	0.010	mg/L	0.135			5.9	20	
Cadmium	ND	0.0001	mg/L	ND			NC	20	
Calcium	59.7	0.100	mg/L	65.7			9.5	20	

Certificate of Analysis

Client PO:

Client: Egis Canada Ltd. (Carp)

Report Date: 14-Mar-2024 Order Date: 7-Mar-2024

Project Description: 22-0256

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Chromium	ND	0.001	mg/L	ND			NC	20	
Cobalt	0.0138	0.0005	mg/L	0.0148			6.9	20	
Copper	0.00331	0.0005	mg/L	0.00355			7.1	20	
Iron	0.202	0.100	mg/L	0.211			4.3	20	
Lead	0.00023	0.0001	mg/L	0.00021			8.3	20	
Magnesium	19.4	0.200	mg/L	21.9			12.4	20	
Manganese	0.251	0.005	mg/L	0.265			5.5	20	
Molybdenum	0.00692	0.0005	mg/L	0.00727			4.9	20	
Nickel	0.0075	0.001	mg/L	0.0080			7.2	20	
Potassium	3.59	0.100	mg/L	4.07			12.5	20	
Selenium	ND	0.001	mg/L	ND			NC	20	
Silver	ND	0.0001	mg/L	ND			NC	20	
Sodium	29.7	0.200	mg/L	34.7			15.4	20	
Strontium	2.30	0.039	mg/L	2.25			2.3	20	
Thallium	0.00027	0.0001	mg/L	0.00025			6.9	20	
Tin	ND	0.005	mg/L	ND			NC	20	
Titanium	ND	0.005	mg/L	ND			NC	20	
Tungsten	0.0397	0.010	mg/L	0.0400			0.8	20	
Uranium	0.0007	0.0001	mg/L	0.0006			1.8	20	
Vanadium	ND	0.0005	mg/L	ND			NC	20	
Zinc	ND	0.005	mg/L	ND			NC	20	
Microbiological Parameters									
E. coli	ND	1	CFU/100mL	ND			NC	30	
Total Coliforms	ND	1	CFU/100mL	ND			NC	30	
Fecal Coliforms	ND	1	CFU/100mL	ND			NC	30	

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Client PO:

Report Date: 14-Mar-2024

Order Date: 7-Mar-2024

Project Description: 22-0256

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	115	1	mg/L	106	87.2	70-124			
Fluoride	1.25	0.1	mg/L	0.38	86.3	70-130			
Nitrate as N	1.22	0.1	mg/L	0.20	102	77-126			
Nitrite as N	0.930	0.05	mg/L	ND	93.0	82-115			
Phosphate as P	4.79	0.5	mg/L	ND	95.8	76-130			
Sulphate	69.1	1	mg/L	60.0	90.3	74-126			
General Inorganics									
Ammonia as N	1.05	0.01	mg/L	0.046	100	81-124			
Dissolved Organic Carbon	12.7	0.5	mg/L	3.2	94.5	60-133			
Phenolics	0.027	0.001	mg/L	ND	106	67-133			
Phosphorus, total	0.997	0.01	mg/L	0.034	96.3	80-120			
Total Dissolved Solids	88.0	10	mg/L	ND	88.0	75-125			
Sulphide	0.49	0.02	mg/L	ND	98.8	79-115			
Tannin & Lignin	1.0	0.1	mg/L	ND	99.9	71-113			
Total Kjeldahl Nitrogen	1.44	0.1	mg/L	0.43	101	81-126			
Metals									
Mercury	0.00270	0.0001	mg/L	ND	90.0	70-130			
Aluminum	59.2	0.001	mg/L	15.1	88.0	80-120			
Arsenic	50.3	0.001	mg/L	0.4	99.8	80-120			
Barium	89.5	0.001	mg/L	47.7	83.7	80-120			
Beryllium	48.1	0.0005	mg/L	0.01	96.1	80-120			
Boron	164	0.010	mg/L	135	56.9	80-120			QM-07
Cadmium	45.6	0.0001	mg/L	0.02	91.1	80-120			
Calcium	9630	0.100	mg/L	ND	96.3	80-120			
Chromium	50.6	0.001	mg/L	0.1	101	80-120			
Cobalt	59.5	0.0005	mg/L	14.8	89.4	80-120			
Copper	47.3	0.0005	mg/L	3.55	87.5	80-120			
Iron	2230	0.100	mg/L	211	80.9	80-120			
Lead	39.6	0.0001	mg/L	0.21	78.7	80-120			QM-07
Magnesium	27800	0.200	mg/L	21900	59.1	80-120			QM-07

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Client PO:

Report Date: 14-Mar-2024

Order Date: 7-Mar-2024

Project Description: 22-0256

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Manganese	52.9	0.005	mg/L	ND	106	80-120			
Molybdenum	49.7	0.0005	mg/L	7.27	85.0	80-120			
Nickel	53.0	0.001	mg/L	8.0	89.9	80-120			
Potassium	12900	0.100	mg/L	4070	88.2	80-120			
Selenium	43.8	0.001	mg/L	0.07	87.5	80-120			
Silver	45.9	0.0001	mg/L	0.01	91.7	80-120			
Sodium	9060	0.200	mg/L	ND	90.6	80-120			
Strontium	53	0.010	mg/L	ND	106	80-120			
Thallium	41.9	0.0001	mg/L	0.25	83.4	80-120			
Tin	43.5	0.005	mg/L	0.4	86.3	80-120			
Titanium	51.4	0.005	mg/L	0.2	102	80-120			
Tungsten	81.9	0.010	mg/L	40.0	83.8	80-120			
Uranium	43.9	0.0001	mg/L	0.6	86.6	80-120			
Vanadium	50.6	0.0005	mg/L	0.13	101	80-120			
Zinc	45	0.005	mg/L	2	86.7	80-120			

Client: Egis Canada Ltd. (Carp)

Order #: 2410428

Certificate of Analysis

Report Date: 14-Mar-2024

Order Date: 7-Mar-2024

Project Description: 22-0256

Qualifier Notes:

Client PO:

Login Qualifiers:

Container and COC sample IDs don't match - 125 ml metals bottle un-labelled; chain of custody reads 198 Perth. Confirmed as 198 Perth as

per the client.

Applies to Samples: 198 Perth

Sample Qualifiers:

QC Qualifiers:

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

300 - 2319 St. Laurent Blvd Ottawa, ON, K1G 4J8 1-800-749-1947 www.paracellabs.com

Certificate of Analysis

Egis Canada Ltd. (Carp)

115 Walgreen Rd. Carp, ON K0A 1L0 Attn: Monica Black

Client PO: Grizzly

Project: 22-0256

Custody: 142332

Report Date: 27-Mar-2024

Order Date: 21-Mar-2024

Order #: 2412333

This Certificate of Analysis contains analytical data applicable to the following samples as submitted:

Paracel ID Client ID

2412333-01 TW5

Approved By:

Mark Froto

Mark Foto, M.Sc.

Lab Supervisor

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Client PO: Grizzly

Report Date: 27-Mar-2024

Order Date: 21-Mar-2024

Project Description: 22-0256

Analysis Summary Table

Analysis	Method Reference/Description	Extraction Date	Analysis Date
Alkalinity, total to pH 4.5	EPA 310.1 - Titration to pH 4.5	25-Mar-24	25-Mar-24
Ammonia, as N	EPA 351.2 - Auto Colour	25-Mar-24	25-Mar-24
Anions	EPA 300.1 - IC	22-Mar-24	22-Mar-24
Colour	SM2120 - Spectrophotometric	22-Mar-24	22-Mar-24
Conductivity	EPA 9050A- probe @25 °C	25-Mar-24	25-Mar-24
Dissolved Organic Carbon	MOE 3247B - Combustion IR	25-Mar-24	25-Mar-24
E. coli	MOE E3407	22-Mar-24	22-Mar-24
Fecal Coliform	SM 9222D	22-Mar-24	22-Mar-24
Heterotrophic Plate Count	SM 9215C	23-Mar-24	23-Mar-24
Mercury by CVAA	EPA 245.2 - Cold Vapour AA	26-Mar-24	26-Mar-24
Metals, ICP-MS	EPA 200.8 - ICP-MS	22-Mar-24	25-Mar-24
pH	EPA 150.1 - pH probe @25 °C	25-Mar-24	25-Mar-24
Phenolics	EPA 420.2 - Auto Colour, 4AAP	22-Mar-24	22-Mar-24
Hardness	Hardness as CaCO3	22-Mar-24	25-Mar-24
Sulphide	SM 4500SE - Colourimetric	22-Mar-24	22-Mar-24
Tannin/Lignin	SM 5550B - Colourimetric	27-Mar-24	27-Mar-24
Total Coliform	MOE E3407	22-Mar-24	22-Mar-24
Total Dissolved Solids	SM 2540C - gravimetric, filtration	22-Mar-24	23-Mar-24
Total Kjeldahl Nitrogen	EPA 351.2 - Auto Colour, digestion	25-Mar-24	26-Mar-24
Turbidity	SM 2130B - Turbidity meter	22-Mar-24	22-Mar-24

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Client PO: Grizzly

Report Date: 27-Mar-2024

Order Date: 21-Mar-2024

Project Description: 22-0256

	Client ID:	TW5	-	_			
	Sample Date:	21-Mar-24 16:00	_	_	_	_	_
	Sample ID:	2412333-01	_	_	_		
	Matrix:	Ground Water	-	-	-		
	MDL/Units						
Microbiological Parameters				!	!	!	
E. coli	1 CFU/100mL	ND	-	-	-	-	-
Total Coliforms	1 CFU/100mL	1 [1]	-	-	-	-	-
Fecal Coliforms	1 CFU/100mL	ND	-	-	-	-	-
Heterotrophic Plate Count	10 CFU/mL	<10	-	-	-	-	-
General Inorganics				•	•		•
Alkalinity, total	5 mg/L	244	-	-	-	-	-
Ammonia as N	0.01 mg/L	0.03	-	-	-	-	-
Dissolved Organic Carbon	0.5 mg/L	1.2	-	-	-	-	-
Colour	2 TCU	<2	-	-	-	-	-
Conductivity	5 uS/cm	643	-	-	-	-	-
Hardness	1 mg/L	247	-	-	-	-	-
рН	0.1 pH Units	8.1	-	-	-	-	-
Phenolics	0.001 mg/L	<0.001	-	-	-	-	-
Total Dissolved Solids	10 mg/L	320	-	-	-	-	-
Sulphide	0.02 mg/L	<0.02	-	-	-	-	-
Tannin & Lignin	0.1 mg/L	<0.1	-	-	-	-	-
Total Kjeldahl Nitrogen	0.1 mg/L	0.2	-	-	-	-	-
Turbidity	0.1 NTU	0.2	-	-	-	-	-
Anions					•		
Chloride	1 mg/L	50	-	-	-	-	-
Fluoride	0.1 mg/L	<0.1	-	-	-	-	-
Nitrate as N	0.1 mg/L	0.9	-	-	-	-	-
Nitrite as N	0.05 mg/L	<0.05	-	-	-	-	-
Phosphate as P	0.5 mg/L	<0.5	-	-	-	-	-
Sulphate	1 mg/L	13	-	-	-	-	-

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Client PO: Grizzly

Report Date: 27-Mar-2024

Order Date: 21-Mar-2024

Project Description: 22-0256

	Client ID:	TW5	-	-	-		
	Sample Date:	21-Mar-24 16:00	-	-	_	_	
	Sample ID:	2412333-01	-	-	-		
	Matrix:	Ground Water	-	-	-		
	MDL/Units						
Metals	·		•	•	•	•	•
Mercury	0.1 ug/L	<0.1	-	-	-	-	-
Aluminum	1 ug/L	2	-	-	-	-	-
Antimony	0.5 ug/L	<0.5	-	-	-	-	-
Arsenic	1 ug/L	<1	-	-	-	-	-
Barium	1 ug/L	307	-	-	-	-	-
Beryllium	0.5 ug/L	<0.5	-	-	-	-	-
Boron	10 ug/L	13	-	-	-	-	-
Cadmium	0.1 ug/L	<0.1	-	-	-	-	-
Calcium	100 ug/L	65800	-	-	-	-	-
Chromium	1 ug/L	<1	-	-	-	-	-
Cobalt	0.5 ug/L	<0.5	-	-	-	-	-
Copper	0.5 ug/L	0.7	-	-	-	-	-
Iron	100 ug/L	<100	-	-	-	-	-
Lead	0.1 ug/L	0.1	-	-	-	-	-
Magnesium	200 ug/L	20100	-	-	-	-	-
Manganese	5 ug/L	<5	-	-	-	-	-
Molybdenum	0.5 ug/L	0.6	-	-	-	-	-
Nickel	1 ug/L	<1	-	-	-	-	-
Potassium	100 ug/L	2870	-	-	-	-	-
Selenium	1 ug/L	<1	-	-	-	-	-
Silver	0.1 ug/L	<0.1	-	-	-	-	-
Sodium	200 ug/L	26200	-	-	-	-	-
Strontium	10 ug/L	172	-	-	-	-	-
Thallium	0.1 ug/L	0.1	-	-	-	-	-
Tin	5 ug/L	<5	-	-	-	-	-

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Client PO: Grizzly Project Description: 22-0256

	Client ID:	TW5	-	-	-		
	Sample Date:	21-Mar-24 16:00	-	-	-	-	-
	Sample ID:	2412333-01	-	-	-		
	Matrix:	Ground Water	-	-	-		
	MDL/Units						
Metals							
Titanium	5 ug/L	<5	-	-	-	-	-
Tungsten	10 ug/L	<10	-	-	-	-	-
Uranium	0.1 ug/L	0.7	-	-	-	-	-
Vanadium	0.5 ug/L	<0.5	-	-	-	-	-
Zinc	5 ug/L	9	-	-	-	-	-

Report Date: 27-Mar-2024

Order Date: 21-Mar-2024

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Client PO: Grizzly

Report Date: 27-Mar-2024

Order Date: 21-Mar-2024

Project Description: 22-0256

Method Quality Control: Blank

Anions Chloride				%REC	Limit	RPD	RPD Limit	Notes
Chloride								
	ND	1	mg/L					
Fluoride	ND	0.1	mg/L					
Nitrate as N	ND	0.1	mg/L					
Nitrite as N	ND	0.05	mg/L					
Phosphate as P	ND	0.5	mg/L					
Sulphate	ND	1	mg/L					
General Inorganics								
Alkalinity, total	ND	5	mg/L					
Ammonia as N	ND	0.01	mg/L					
Dissolved Organic Carbon	ND	0.5	mg/L					
Colour	ND	2	TCU					
Conductivity	ND	5	uS/cm					
Phenolics	ND	0.001	mg/L					
Total Dissolved Solids	ND	10	mg/L					
Sulphide	ND	0.02	mg/L					
Tannin & Lignin	ND	0.1	mg/L					
Total Kjeldahl Nitrogen	ND	0.1	mg/L					
Turbidity	ND	0.1	NTU					
Metals								
Mercury	ND	0.1	ug/L					
Aluminum	ND	1	ug/L					
Antimony	ND	0.5	ug/L					
Arsenic	ND	1	ug/L					
Barium	ND	1	ug/L					
Beryllium	ND	0.5	ug/L					
Boron	ND	10	ug/L					
Cadmium	ND	0.1	ug/L					
Calcium	ND	100	ug/L					
Chromium	ND	1	ug/L					
Cobalt	ND	0.5	ug/L					
Copper	ND	0.5	ug/L					
Iron	ND	100	ug/L					

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Client PO: Grizzly

Report Date: 27-Mar-2024

Order Date: 21-Mar-2024

Project Description: 22-0256

Method Quality Control: Blank

Analyte	Result	Reporting Limit	Units	%REC	%REC Limit	RPD	RPD Limit	Notes
Lead	ND	0.1	ug/L					
Magnesium	ND	200	ug/L					
Manganese	ND	5	ug/L					
Molybdenum	ND	0.5	ug/L					
Nickel	ND	1	ug/L					
Potassium	ND	100	ug/L					
Selenium	ND	1	ug/L					
Silver	ND	0.1	ug/L					
Sodium	ND	200	ug/L					
Strontium	ND	10	ug/L					
Thallium	ND	0.1	ug/L					
Tin	ND	5	ug/L					
Titanium	ND	5	ug/L					
Tungsten	ND	10	ug/L					
Uranium	ND	0.1	ug/L					
Vanadium	ND	0.5	ug/L					
Zinc	ND	5	ug/L					
Microbiological Parameters								
E. coli	ND	1	CFU/100mL					
Total Coliforms	ND	1	CFU/100mL					
Fecal Coliforms	ND	1	CFU/100mL					
Heterotrophic Plate Count	ND	10	CFU/mL					

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Client PO: Grizzly

Report Date: 27-Mar-2024

Order Date: 21-Mar-2024

Project Description: 22-0256

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	49.3	1	mg/L	49.6			0.4	20	
Fluoride	ND	0.1	mg/L	ND			NC	20	
Nitrate as N	0.84	0.1	mg/L	0.86			1.5	20	
Nitrite as N	ND	0.05	mg/L	ND			NC	20	
Phosphate as P	ND	0.5	mg/L	ND			NC	20	
Sulphate	12.8	1	mg/L	12.7			0.3	10	
General Inorganics									
Alkalinity, total	207	5	mg/L	207			0.2	14	
Ammonia as N	0.014	0.01	mg/L	0.015			4.7	18	
Dissolved Organic Carbon	4.9	0.5	mg/L	4.8			1.1	37	
Colour	ND	2	TCU	ND			NC	12	
Conductivity	1380	5	uS/cm	1370			0.5	5	
pH	8.2	0.1	pH Units	8.2			0.1	3.3	
Phenolics	ND	0.001	mg/L	ND			NC	10	
Total Dissolved Solids	312	10	mg/L	320			2.5	10	
Sulphide	ND	0.02	mg/L	ND			NC	10	
Tannin & Lignin	ND	0.1	mg/L	ND			NC	11	
Total Kjeldahl Nitrogen	0.36	0.1	mg/L	0.32			10.5	16	
Turbidity	0.2	0.1	NTU	0.2			4.3	10	
Metals									
Mercury	ND	0.1	ug/L	ND			NC	20	
Aluminum	8.8	1	ug/L	8.2			6.9	20	
Antimony	ND	0.5	ug/L	ND			NC	20	
Arsenic	ND	1	ug/L	ND			NC	20	
Barium	22.0	1	ug/L	22.2			1.1	20	
Beryllium	ND	0.5	ug/L	ND			NC	20	
Boron	18	10	ug/L	19			2.3	20	
Cadmium	ND	0.1	ug/L	ND			NC	20	
Calcium	30400	100	ug/L	32500			6.5	20	
Chromium	ND	1	ug/L	ND			NC	20	

Report Date: 27-Mar-2024

Client: Egis Canada Ltd. (Carp)

Order Date: 21-Mar-2024

Client PO: Grizzly

Certificate of Analysis

Project Description: 22-0256

Method Quality Control: Duplicate

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Cobalt	ND	0.5	ug/L	ND			NC	20	
Copper	1.57	0.5	ug/L	1.60			2.0	20	
Iron	ND	100	ug/L	ND			NC	20	
Lead	0.18	0.1	ug/L	0.20			15.0	20	
Magnesium	7860	200	ug/L	7940			1.0	20	
Manganese	ND	5	ug/L	ND			NC	20	
Molybdenum	1.57	0.5	ug/L	1.52			3.6	20	
Nickel	ND	1	ug/L	ND			NC	20	
Potassium	1490	100	ug/L	1530			2.8	20	
Selenium	ND	1	ug/L	ND			NC	20	
Silver	ND	0.1	ug/L	ND			NC	20	
Sodium	15400	200	ug/L	16400			6.9	20	
Strontium	170	10	ug/L	174			2.1	20	
Thallium	ND	0.1	ug/L	ND			NC	20	
Tin	ND	5	ug/L	ND			NC	20	
Titanium	ND	5	ug/L	ND			NC	20	
Tungsten	ND	10	ug/L	ND			NC	20	
Uranium	ND	0.1	ug/L	ND			NC	20	
Vanadium	ND	0.5	ug/L	ND			NC	20	
Zinc	6	5	ug/L	5			9.1	20	
Microbiological Parameters									
E. coli	ND	10	CFU/100mL	ND			NC	30	
Total Coliforms	ND	10	CFU/100mL	ND			NC	30	
Fecal Coliforms	ND	10	CFU/100mL	ND			NC	30	
Heterotrophic Plate Count	ND	10	CFU/mL	ND			NC	30	

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Client PO: Grizzly

Report Date: 27-Mar-2024

Order Date: 21-Mar-2024

Project Description: 22-0256

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Anions									
Chloride	59.0	1	mg/L	49.6	94.6	70-124			
Fluoride	0.90	0.1	mg/L	ND	90.2	70-130			
Nitrate as N	1.84	0.1	mg/L	0.86	97.9	77-126			
Nitrite as N	0.997	0.05	mg/L	ND	99.7	82-115			
Phosphate as P	4.96	0.5	mg/L	ND	99.3	76-130			
Sulphate	22.6	1	mg/L	12.7	99.0	74-126			
General Inorganics									
Ammonia as N	0.966	0.01	mg/L	0.015	95.1	81-124			
Dissolved Organic Carbon	14.5	0.5	mg/L	4.8	96.8	60-133			
Phenolics	0.026	0.001	mg/L	ND	103	67-133			
Total Dissolved Solids	104	10	mg/L	ND	104	75-125			
Sulphide	0.44	0.02	mg/L	ND	88.0	79-115			
Tannin & Lignin	1.0	0.1	mg/L	ND	103	71-113			
Total Kjeldahl Nitrogen	1.35	0.1	mg/L	0.32	103	81-126			
Metals									
Mercury	2.70	0.1	ug/L	ND	90.0	70-130			
Aluminum	53.6	1	ug/L	8.2	90.9	80-120			
Arsenic	48.7	1	ug/L	ND	96.6	80-120			
Barium	67.4	1	ug/L	22.2	90.4	80-120			
Beryllium	47.1	0.5	ug/L	ND	94.1	80-120			
Boron	61	10	ug/L	19	84.3	80-120			
Cadmium	48.7	0.1	ug/L	ND	97.4	80-120			
Calcium	39900	100	ug/L	32500	74.7	80-120			QM-07
Chromium	48.0	1	ug/L	ND	95.6	80-120			
Cobalt	46.5	0.5	ug/L	ND	92.9	80-120			
Copper	45.6	0.5	ug/L	1.60	87.9	80-120			
Iron	2300	100	ug/L	ND	89.3	80-120			
Lead	40.8	0.1	ug/L	0.20	81.3	80-120			
Magnesium	16100	200	ug/L	7940	82.1	80-120			
Manganese	50.7	5	ug/L	ND	95.6	80-120			

Certificate of Analysis

Client: Egis Canada Ltd. (Carp)

Client PO: Grizzly

Report Date: 27-Mar-2024

Order Date: 21-Mar-2024

Project Description: 22-0256

Method Quality Control: Spike

Analyte	Result	Reporting Limit	Units	Source Result	%REC	%REC Limit	RPD	RPD Limit	Notes
Molybdenum	43.6	0.5	ug/L	1.52	84.2	80-120			
Nickel	47.2	1	ug/L	ND	93.5	80-120			
Potassium	10700	100	ug/L	1530	92.0	80-120			
Selenium	45.7	1	ug/L	ND	91.0	80-120			
Silver	45.7	0.1	ug/L	ND	91.4	80-120			
Sodium	23400	200	ug/L	16400	69.4	80-120			QM-07
Strontium	51	10	ug/L	ND	103	80-120			
Thallium	44.2	0.1	ug/L	ND	88.3	80-120			
Tin	45.9	5	ug/L	ND	91.5	80-120			
Titanium	49.8	5	ug/L	ND	99.7	80-120			
Tungsten	41.1	10	ug/L	ND	81.1	80-120			
Uranium	42.7	0.1	ug/L	ND	85.4	80-120			
Vanadium	49.0	0.5	ug/L	ND	97.7	80-120			
Zinc	49	5	ug/L	5	87.4	80-120			

Client: Egis Canada Ltd. (Carp)

Order #: 2412333

Report Date: 27-Mar-2024

Order Date: 21-Mar-2024

Project Description: 22-0256

Certificate of Analysis

Client PO: Grizzly

Qualifier Notes:

Sample Qualifiers:

1: Duplicate result for this sample analysis was determined to be ND.

Applies to Samples: TW5

QC Qualifiers:

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on other acceptable QC.

Sample Data Revisions:

None

Work Order Revisions / Comments:

None

Other Report Notes:

n/a: not applicable ND: Not Detected

MDL: Method Detection Limit

Source Result: Data used as source for matrix and duplicate samples

%REC: Percent recovery.

RPD: Relative percent difference.

NC: Not Calculated

Any use of these results implies your agreement that our total liabilty in connection with this work, however arising, shall be limited to the amount paid by you for this work, and that our employees or agents shall not under any circumstances be liable to you in connection with this work.

Environment Testing

146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

OFFICIAL CERTIFICATE OF ANALYSIS: 3849806

WORK REQUEST : 100271665 Report Date : 2024-03-25

Box 422, RRH4 Reception Date : 2024-03-22
Ashton, Ontario Project : Franktown Subdiv

Sampler: NA

Attention : Mike Facchin - Grizzly Homes PO Number : Credit Card Temperature : 15 °C

Analysis		External Method
E.Coli and Total Coliforms (DC Plate)	2	Modified from MECP E3407

Criteria:

K0A 1B0

A: Ontario Regulation 169/03 (Non-Regulated Drinking Water)

Sample status upon receipt :

7578486 7578490 **Compliant**

Notes

- All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise stated.
- Eurofins Environment Testing Canada Inc. is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at https://directory.cala.ca/
- Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline or regulatory limits listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official guideline or regulation as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

Legend :

www.eurofins.ca

Environment Testing

146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

OFFICIAL CERTIFICATE OF ANALYSIS - RESULTS

Project : Franktown Subdiv Reception Date: 2024-03-22

		7578486	7578490						
	Drinking water	Drinking water							
	2024-03-20	2024-03-21							
	Client Sample Identification :								
Microbiology	Microbiology Criteria			A320985 -	A320985 -				
	RL	Unit	Α	В	С	Pre	Post		
E.Coli and Total Coliforms (DC Plate)									
Escherichia coli (DC)	0	CFU/100mL	0			0	0		
Total Coliforms (DC)	0	CFU/100mL	0			0	0		

Approved by:

Emma-Dawn Ferguson, Enviromental Chemist

Environment Testing

146 Colonnade Rd, Unit 8, Ottawa, ON K2E 7Y1 (613) 727-5692

OFFICIAL CERTIFICATE OF ANALYSIS - QUALITY CONTROL

Project: Franktown Subdiv Reception Date: 2024-03-22

	Unit	RL	Blank	Q	5	Matrix 9	Spike	Duplicate	
Parameter				Recovery %	Range %	Recovery %	Range %	RPD %	Range %
E.Coli and Total Coliforms (DC Plate)									
Method : Total (Coliforms and E.C	Coli by MF (V	Vater, DC plate)	. Internal metl	nod: OTT-M	-BAC-WI45296	ì.		
Escherichia coli (DC)	CFU/100mL	0	0					-	0-30
Total Coliforms (DC)	CFU/100mL	0	0					-	0-30
	Associated Sam	ples : 75784	86, 7578490				Д	Prep Date: Analysis Date:	: 2024-03-22 : 2024-03-23

Where RPD % is reported as "-" the calculation is not available because one or both of the duplicates is within 5 times the RL.

Certificate of Analysis

Client: Egis Canada Ltd.

115 Walgreen Rd., R.R. #3

Carp, ON K0A 1L0

Attention: Ms. Rebecca Leduc

PO#:

Invoice to: EGIS Canada Ltd. Page 1 of 2

 Report Number:
 3006428

 Date Submitted:
 2024-04-09

 Date Reported:
 2024-04-11

Project:

COC #: 227214

Dear Rebecca Leduc:

Please find attached the analytical results for your samples. If you have any questions regarding this report, please do not hesitate to call (613-727-56)	P	lease fin	ıd atta	ched t	he ana	lytica	l resul	ts fo	r your	samp	oles. If	you	have a	ny c	uestions r	egardin	g this r	eport,	please	do not	: hesita	te to c	call (613-	-727-	-569	2)
--	---	-----------	---------	--------	--------	--------	---------	-------	--------	------	----------	-----	--------	------	------------	---------	----------	--------	--------	--------	----------	---------	--------	------	-------	------	----

eport Comments:		
APPROVAL:		
	Emma-Dawn Ferguson, Chemist	

All analysis is completed at Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) unless otherwise indicated.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by CALA, Canadian Association for Laboratory Accreditation to ISO/IEC 17025 for tests which appear on the scope of accreditation. The scope is available at: https://directory.cala.ca/.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is licensed by the Ontario Ministry of the Environment, Conservation, and Parks (MECP) for specific tests in drinking water (license #2318). A copy of the license is available upon request.

Eurofins Environment Testing Canada Inc. (Ottawa, Ontario) is accredited by the Ontario Ministry of Agriculture, Food, and Rural Affairs for specific tests in agricultural soils.

Please note: Field data, where presented on the report, has been provided by the client and is presented for informational purposes only. Guideline values listed on this report are provided for ease of use (informational purposes) only. Eurofins recommends consulting the official provincial or federal guideline as required. Unless otherwise stated, measurement uncertainty is not taken into account when determining guideline or regulatory exceedances.

Additional QA/QC, method, and analytical run information is available upon request.

Certificate of Analysis

Environment Testing

Client: Egis Canada Ltd.

115 Walgreen Rd., R.R. #3

Carp, ON K0A 1L0

Attention: Ms. Rebecca Leduc

PO#:

Invoice to: EGIS Canada Ltd.

Report Number: 3006428
Date Submitted: 2024-04-09
Date Reported: 2024-04-11

Project:

COC #: 227214

Group	Analyte	MRL	Units	Lab I.D. Sample Matrix Sample Type Sampling Date Sample I.D. Guideline	1723006 GW 2024-04-08 TW5
Microbiology	Escherichia Coli	0	ct/100mL	MAC 0	0
	Faecal Coliforms	0	ct/100mL		0
	Heterotrophic Plate Count	0	ct/1mL		0
	Total Coliforms	0	ct/100mL	MAC 0	0

Guideline = ODWSOG

* = Guideline Exceedence

Results relate only to the parameters tested on the samples submitted. **Analytical Method: AMBCOLM1**Additional QA/QC, method, and analytical run information is available upon request.

MRL = Method Reporting Limit, AO = Aesthetic Objective, OG = Operational Guideline, MAC = Maximum Acceptable Concentration, IMAC = Interim Maximum Acceptable Concentration, STD = Standard, PWQO = Provincial Water Quality Guideline, IPWQO = Interim Provincial Water Quality Objective, TDR = Typical Desired Range

HYDROGEOLOGICAL ASSESSMENT AND TERRAIN ANALYSIS GRIZZLY HOMES SUBDIVISION, BECKWITH, ONTARIO

APPENDIX G: CALCULATIONS

Transmissivity Calculations

$$T = \frac{2.3 \ Q}{4 \ \pi \Delta s}$$

T is the transmissivity (m2/day)

Q is the pumping rate during the pumping test (L/min); and, \(\Delta \) is the differential for residual drawdown for one log cycle (m)

Test Well 1 T= $2.3 Q / 4\pi \Delta S$ T= $2.3 (30.24 m3/day)/4\pi (1.15 m)$ T= $43.3 m2/day$	Q = 21.0 L/min Q=((21.0 L/min)/(1000L))*(60 min)(24 hour) Q= 30.24 m3/day	Test Well 1 Recovery T= $2.3 \ Q / 4\pi \ \Delta S$ T= $2.3 \ (117.792 \ m3/day)/4\pi \ (1.29 \ m)$ T= $55.4 \ m2/day$	Q = 21 L/min Q=((21 L/min)/(1000L))*(60 min)(24 hour) Q= 30.24 m3/day
	$\Delta s = 0.128$ m		$\Delta s = 0.10$ m
Test Well 2 T= $2.3 \text{Q} / 4\pi \Delta \text{S}$ T= $2.3 (117.792 \text{m} 3 / \text{day}) / 4\pi (1.15 \text{m})$ T= $13.9 \text{m} 2 / \text{day}$	Q = 81.8 L/min Q=((81.8 L/min)/(1000L))*(60 min)(24 hour) Q= 117.79 m3/day	Test Well 2 Recovery	Q = 81.8 L/min Q=((81.8 L/min)/(1000L))*(60 min)(24 hour) Q= 117.792 m3/day
	$\Delta s = 1.55$ m		$\Delta s = 1.29$ m
Test Well 3 T= $2.3 \text{Q} / 4\pi \Delta \text{S}$ T= $2.3 (129.6 \text{m} 3/\text{day}) / 4\pi (0.75 \text{m})$ T= $175.8 \text{m} 2/\text{day}$	Q = 90 L/min Q=((90 L/min)/(1000L))*(60 min)(24 hour) Q= 129.60 m3/day	Test Well 3 Recovery T= 2.3 Q / 4π ΔS T= 2.3 (129.6 m3/day)/4π (0.42) T= 192.9 m2/day	Q = 90 L/min Q=((90 L/min)/(1000L))*(60 min)(24 hour) Q= 129.60 m3/day
	$\Delta s = 0.135$ m		$\Delta s = 0.123$ m
Test Well 4 T= $2.3 \text{Q} / 4\pi \Delta \text{S}$ T= $2.3 (129.6 \text{m} 3/\text{day}) / 4\pi (0.75 \text{m})$ T= $26.7 \text{m} 2/\text{day}$	Q = 90 L/min Q=((90 L/min)/(1000L))*(60 min)(24 hour) Q= 129.60 m3/day	Test Well 4 Recovery $T = 2.3 \text{ Q} / 4\pi \Delta S$ $T = 2.3 \text{ (129.6 m3/day)} / 4\pi \text{ (0.42)}$ $T = 26.4 \qquad m2/day$	Q = 90 L/min Q=((90 L/min)/(1000L))*(60 min)(24 hour) Q= 129.60 m3/day
	$\Delta s = 0.89$ m		$\Delta s = 0.9$ m
Test Well 5 T= $2.3 \text{Q} / 4\pi \Delta \text{S}$ T= $2.3 (129.6 \text{m} 3/\text{day}) / 4\pi (0.75 \text{m})$ T= $474.6 \text{m} 2/\text{day}$	Q = 90 L/min Q=((90 L/min)/(1000L))*(60 min)(24 hour) Q= 129.60 m3/day	Test Well 5 Recovery T= 2.3 Q / 4π ΔS T= 2.3 (129.6 m3/day)/4π (0.42) T= 365.1 m2/day	Q =90 L/min Q=((90 L/min)/(1000L))*(60 min)(24 hour) Q= 129.60 m3/day
	$\Delta s = 0.05$ m		$\Delta s = 0.065$ m

Farvolden Method - Long Term Yeild Calculations

Q20= 0.68 T Ha Sf

Ha= the available water column height (m)

Sf= safety factor

T= Transmissivity (m2/day)

Test Well 1

T= 43.3 m2/day

Q20= 0.68 (43.3 m2/day)(14.51 m)(0.7) Sf= 0.7

pump at 60 ft = 18.29 m btop Q20= 299.02 m3/day static WL 3.78 m btop

Q20= 299021.5 L/day Ha = 18.29 - 3.78 m

Q20= 207.7 L/min Ha = 14.51 m

Test Well 2

T= 13.9 m2/day

Q20= 0.68 (13.9 m2/day)(23.89 m)(0.7) Sf= 0.7

pump at 80 ft = 24.38 m btop

Q20= 129.8 m3/day static WL 4.762 m btop

Q20= 129827 L/day Ha = 28.6512 - 4.762 m

Q20= 90.2 L/min Ha = 19.62 m

Test Well 3

T= 175.8 m2/day

Q20= 0.68 (175.8 m2/day)(21.0 m)(0.7) Sf= 0.7

pump at 100 ft = 30.48 m btop Q20= 1757.2 m3/day static WL 9.481 m btop

Q20= 1757213.1 L/day Ha = 33.53 m - 9.481 m

Q20= 1220.3 L/min Ha = 21.00 m

Test Well 4

T= 26.4 m2/day

Q20= 0.68 (26.4 m2/day)(18.97 m)(0.7) Sf= 0.7

pump at 100 ft = 30.48 m btop Q20= 238.4 m3/day static WL 11.51 m btop

Q20= 238384.6 L/day Ha = 30.48 m - 11.51 m

Q20= 165.5 L/min Ha = 18.97 m

Test Well 5

T=365.1 m2/day

Q20= 0.68 (365.1 m2/day)(25.13 m)(0.7) Sf= 0.7

Q20= 4366587.2 L/day Ha = 30.48 m - 11.45 m

Q20= 3032.4 L/min Ha = 25.13 m

Moell Method - Long Term Yeild Calculations

 $Q20 = (Q \text{ Ha Sf}) / (s100 + 5 \Delta s)$

Q= the pumping rate (m3/day)

Ha= the available water column height (m)

Sf= safety factor

s100= the drawdown at 100 minutes (semi-log long-term graph)

Δs= the change in hydraulic head over one log cycle (drawdown vs. long time)

Δ2=	the change in riyuradiic flead over one log cycle (drawdown vs. ic	ong tim	ie)		
Test Well	1	Ha =	Q=	30.24 14.51	m3/day m
Q20= Q20= Q20= Q20=	((30.24 m3/day)(14.51 m)(0.7))/[(0.395 m + 5(0.128 m)] 296.8 m3/day 296761 L/day 206.1 L/min	Sf = 0 s100	=	0.395 0.128	i m m
Test Well	2		Q=	117.79	m3/day
Q20= Q20= Q20= Q20=	((117.79 m3/day)(19.62 m)(0.7))/[(5.52 m + 5(1.55 m)] 121.9 m3/day 121910.7 L/day 84.7 L/min	Ha = Sf = 0 s100	=	19.62 5.52 1.55	
Test Well	3		Q=	129.60	m3/day
Q20= Q20= Q20= Q20=	((129.6 m3/day)(21.0 m)(0.7))/[(0.47 m + 5(0.135 m)] 1663.9 m3/day 1663860 L/day 1155.5 L/min	Ha = Sf = 0 s100	=	21.00 0.47 0.135	
Test Well	4	Q=		129.6	m3/day
Q20= Q20= Q20= Q20=	((129.6 m3/day)(18.97 m)(0.7))/[(0.35 m + 5(0.89 m)] 358.5 m3/day 358533 L/day 249.0 L/min	Ha = Sf = 0 s100		18.97 0.35 0.89	j
Test Well	5	Q=			m3/day
Q20= Q20= Q20= Q20=	((129.6 m3/day)(25.13 m)(0.7))/[(0.2 m + 5(0.05 m)] 5066.2 m3/day 5066208 L/day 3518.2 L/min	Ha = Sf = 0 s100		25.13 0.2 0.05	2

Hydraulic Conductivity

k=T/B

T is the transmissivity (m2/day, the more conservative value is used)

b is the thickness of X m, which corresponds to the interval between the bottom of the casing and the bottom of the well, used as aquifer thickness (m)

TW1	TW2	TW3	TW4	TW5
Casing length 40 ft	Casing length 42 ft	Casing length 42 ft	Casing length 42 ft	Casing length 42 ft
Well Depth 81 st	Well Depth 100 ft	Well Depth 120 ft	Well Depth 122 ft	Well Depth 140 ft
B= 41 ft 12.5 m	B= 58 ft 17.7 m	B= 78 ft 23.8 m	B= 80 ft 24.4 m	B= 98 ft 29.9 m
T= 43.3 m2/day	T = 13.9 m2/day	T=175.8 m2/day	T=26.4 m2/day	T=365.1 m2/day
T= 0.000501157 m2/s	T= 0.00016088 m2/s	T= 0.002034722 m2/s	T= 0.000305556 m2/s	T= 0.004225694 m2/s
k= T/B	k= T/B	k= T/B	k= T/B	k= T/B
k= (0.000501157 m2/s /12.5 m)	k= (0.00012088 m2/s)/(17.7 m)	k= (0.00203472 m/s)/42.672	k= (0.000306 m/s/24.4 m)	k= (0.004226 m/s/29.9 m)
k= 4.01E-05 m/s	k= 9.10E-06 m/s	k= 8.56E-05 m/s	k= 1.25E-05 m/s	k= 1.41E-04 m/s

k (avg)= 5.78E-05

Well Interference Calculations

Radial Distance

(m) 0.076 50	Number of Wells 1	Lot # 11	
	1	11	
50	1		
		10	Note: Adjust radial distances from central well to suite
100	1	25	Site. Position theoretical wells at radial distance from
150	1	24	central well- one well per lot.
200	0	0	
250	2	23,8	
300	2	12,7	
350	3	22,26,6	
400	3	13,14,5	
450	4	15,21,27,5	
500	4	20,19,28,4	
550	4	17,18,29,3	
600	3	16,2,30	
650	1	1	
Total	30		

 $u = r^2 S / 4 T t$ $s = Q (W(u)) / 4 \pi T$

Q = 450 L/day * 5 persons minimum Q based on Daily Design Flow requirements Q = 2250 L/day 2.25 m3/day

T 139.08 m2/day Average Transmissivity value (TW1, TW2, TW3, TW4, TW5)
S 1.00E-04 assumed value based on deep fractured BR aquifer
t 365 days

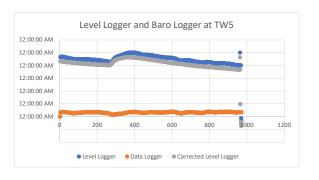
		0.076	50	100	150	200	250	300	350) 400)	450	500	550	600	650
	Case 1	Case 2	Case 3	Cas	e 4 Case 5	Case 6	Case 7	7	Case 8	Case 9	Case 10	Case 11	Case	12 Case 1	1 C	ase 12
u		2.84E-12	1.23E-06	4.92E-06	1.11E-05	1.97E-05	3.08E-05	4.43E-05	6.03E-05	7.88E-05	5 9	9.97E-05	1.23E-04	1.49E-04	1.77E-04	2.08E-04
W(u)		26.008	13.030	11.644	10.833	10.258	9.811	9.447	9.139	8.872	2	8.636	8.425	8.235	8.061	7.901

	Well Radius to Centre of Subdivision (m)	Number of Wells Located at Specified Radius	Predicted Drawdown Caused by Single Well (m)	Drawdown Caused by All Wells at Specified Radial Distance (m)
Case 1	0.076		0.033	
Case 2	50	1	0.017	0.017
Case 3	100	1	0.015	0.015
Case 4	150	1	0.014	0.014
Case 5	200	0	0.013	0.000
Case 6	250	2	0.013	0.025
Case 7	300	2	0.012	0.024
Case 8	350	3	0.012	0.035
Case 9	400	3	0.011	0.034
Case 10	450	4	0.011	0.044
Case 11	500	4	0.011	0.043
Case 12	550	4	0.011	0.042
Case 13	600	3	0.010	0.031
Case 14	650	1	0.010	0.010
				0.369

	TW1	TW2	TW3	TW4	TW5
depth of					
well (m)	24.69	30.48	36.56	37.12	42.67
depth to					
water					
	0.70	4,762	0.404	44.54	44.440
level (m)	3.78	4.762	9.481	11.51	11.446
water					
column					
height (m)	20.91	25,718	27.079	25.61	31,224
,					*

From well records - user input Calculated by spreadsheet From modelling data - user input

HYDROGEOLOGICAL ASSESSMENT AND TERRAIN ANALYSIS GRIZZLY HOMES SUBDIVISION, BECKWITH, ONTARIO


APPENDIX H: LEVEL LOGGER AND BARO LOGGER DATA

Serial_number: 1026456

1026456
Project ID:
22_0256
Location:
Grizzly_TW5_18Apr23
LEVEL
UNIT: m

Time LEVEL Time LEVEL April 19, 2023 4:28:56 PM 9,3303 4:19:29 PM 0.6598 April 19, 2023 6:28:56 PM 9,3363 3:19:29 PM 0.6694 April 19, 2023 7:28:56 PM 9,3513 5:19:29 PM 0.6694 April 19, 2023 7:28:56 PM 9,3513 8:19:29 PM 0.6914 April 19, 2023 9:28:56 PM 9,3513 8:19:29 PM 0.6914 April 19, 2023 9:28:56 PM 9,3553 8:19:29 PM 0.6998 April 19, 2023 12:28:56 PM 9,3553 8:19:29 PM 0.6998 April 20, 2023 12:28:56 PM 9,3551 11:19:29 PM 0.7031 April 20, 2023 12:28:56 AM 9,3552 11:19:29 PM 0.7034 April 20, 2023 12:28:56 AM 9,3557 12:19:29 AM 0.7046 April 20, 2023 2:28:56 AM 9,3551 4:19:29 AM 0.7158 April 20, 2023 2:28:56 AM 9,3551 4:19:29 AM 0.7158 April 20, 2023 5:28:56 AM 9,3552 3:19:29 AM 0.7204 April 20, 2023 5:28:56 AM 9,3561 4:19:29 AM 0.7204 April 20, 2023 5:28:56 AM 9,3561 5:19:29 AM 0.7204 April 20, 2023 5:28:56 AM 9,3561 5:19:29 AM 0.7284 April 20, 2023 5:28:56 AM 9,3561 5:19:29 AM 0.7284 April 20, 2023 7:28:56 AM 9,3605 7:19:29 AM 0.7344 April 20, 2023 12:28:56 AM 9,3605 7:19:29 AM 0.7344 April 20, 2023 12:28:56 AM 9,3605 7:19:29 AM 0.7444 April 20, 2023 12:28:56 AM 9,3605 7:19:29 AM 0.7444 April 20, 2023 12:28:56 PM 9,3541 11:19:29 AM 0.7444 April 20, 2023 12:28:56 PM 9,3501 12:19:29 PM 0.7440 April 20, 2023 12:28:56 PM 9,3501 12:19:29 PM 0.7540 April 20, 2023 12:28:56 PM 9,3003 3:19:29 PM 0.7540 April 20, 2023 4:28:56 PM 9,3003 3:19:29 PM 0.7540 April 20, 2023 4:28:56 PM 9,2861 4:19:29 PM 0.7540 April 20, 2023 4:28:56 PM 9,2861 4:19:29 PM 0.7540 April 20, 2023 5:28:56 PM 9,2861 4:19:29 PM 0.7608 April 20, 2023 5:28:56 PM 9,2861 4:19:29 PM 0.7608 April 20, 2023 5:28:56 PM 9,2861 5:19:29 PM 0.6969 April 20, 2023 5:28:56 PM 9,2861 5:19:29 PM 0.6969 April 20, 2023 5:28:56 PM 9,2857 7:19:2	UNIT: m				
April 19, 2023 4:28:56 PM 9,3303 4:19:29 PM 0.6698 April 19, 2023 5:28:56 PM 9,3441 6:19:29 PM 0.6734 April 19, 2023 7:28:56 PM 9,3513 8:19:29 PM 0.6863 April 19, 2023 9:28:56 PM 9,3535 8:19:29 PM 0.6984 April 19, 2023 10:28:56 PM 9,3552 10:19:29 PM 0.6985 April 20, 2023 11:28:56 PM 9,3551 11:19:29 PM 0.7046 April 20, 2023 12:28:56 AM 9,3507 12:19:29 AM 0.7046 April 20, 2023 3:28:56 AM 9,3521 11:19:29 AM 0.7158 April 20, 2023 3:28:56 AM 9,3561 11:19:29 AM 0.7158 April 20, 2023 3:28:56 AM 9,3561 5:19:29 AM 0.7281 April 20, 2023 12:28:56 AM 9,3561 5:19:29 AM 0.7364 April 20, 2023 12:28:56 AM 9,3605 5:19:29 AM 0.7346 April 20, 2023 12:28:56 AM 9,3605 7:19:29 AM 0.7442 <					
April 19, 2023					
April 19, 2023	-				
April 19, 2023					
April 19, 2023					
April 19, 2023 9:28:56 PM 9.3543 9:19:29 PM 0.6985 April 19, 2023 11:28:56 PM 9.3552 11:19:29 PM 0.7024 April 20, 2023 12:28:56 AM 9.3507 12:19:29 AM 0.7046 April 20, 2023 12:28:56 AM 9.3507 12:19:29 AM 0.7031 April 20, 2023 2:28:56 AM 9.3507 12:19:29 AM 0.7158 April 20, 2023 3:28:56 AM 9.3532 3:19:29 AM 0.7158 April 20, 2023 3:28:56 AM 9.3552 3:19:29 AM 0.7202 April 20, 2023 5:28:56 AM 9.3561 5:19:29 AM 0.7202 April 20, 2023 5:28:56 AM 9.3567 5:19:29 AM 0.7364 April 20, 2023 5:28:56 AM 9.3567 5:19:29 AM 0.7364 April 20, 2023 6:28:56 AM 9.3566 6:19:29 AM 0.7364 April 20, 2023 7:28:56 AM 9.3561 8:19:29 AM 0.7364 April 20, 2023 3:28:56 AM 9.3561 8:19:29 AM 0.7444 April 20, 2023 11:28:56 AM 9.3546 10:19:29 AM 0.7444 April 20, 2023 11:28:56 AM 9.3463 10:19:29 AM 0.7376 April 20, 2023 11:28:56 AM 9.3463 10:19:29 AM 0.7376 April 20, 2023 11:28:56 AM 9.3103 12:19:29 AM 0.7376 April 20, 2023 11:28:56 AM 9.3103 12:19:29 AM 0.7376 April 20, 2023 12:28:56 PM 9.3003 3:19:29 PM 0.7214 April 20, 2023 2:28:56 PM 9.3003 3:19:29 PM 0.7214 April 20, 2023 2:28:56 PM 9.3003 3:19:29 PM 0.7214 April 20, 2023 5:28:56 PM 9.2986 4:19:29 PM 0.7441 April 20, 2023 5:28:56 PM 9.2986 4:19:29 PM 0.7441 April 20, 2023 5:28:56 PM 9.2986 4:19:29 PM 0.7441 April 20, 2023 5:28:56 PM 9.2985 5:19:29 PM 0.7441 April 20, 2023 5:28:56 PM 9.2986 4:19:29 PM 0.7044 April 20, 2023 6:28:56 PM 9.2986 4:19:29 PM 0.7044 April 20, 2023 6:28:56 PM 9.2886 5:19:29 PM 0.7044 April 20, 2023 6:28:56 PM 9.2886 5:19:29 PM 0.7044 April 20, 2023 6:28:56 PM 9.2850 7:19:29 PM 0.6966 April 20, 2023 6:28:56 PM 9.2850 7:19:29 PM 0.6966 April 20, 2023 6:28:56 PM 9.2850 7:19:29 PM 0.6966 April 20, 2023 6:28:56 AM 9.2509 7:19:29 PM 0.6966 April 21, 2023					
April 19, 2023 10:28:56 PM 9.3491 11:19:29 PM 0.7031 April 19, 2023 11:28:56 AM 9.3507 12:19:29 AM 0.7046 April 20, 2023 12:28:56 AM 9.3537 1:19:29 AM 0.7135 April 20, 2023 12:28:56 AM 9.3537 1:19:29 AM 0.7135 April 20, 2023 4:28:56 AM 9.3519 2:19:29 AM 0.7158 April 20, 2023 4:28:56 AM 9.3519 2:19:29 AM 0.7158 April 20, 2023 4:28:56 AM 9.3561 4:19:29 AM 0.7202 April 20, 2023 7:28:56 AM 9.3567 5:19:29 AM 0.7281 April 20, 2023 7:28:56 AM 9.3567 5:19:29 AM 0.7281 April 20, 2023 7:28:56 AM 9.3605 7:19:29 AM 0.7364 April 20, 2023 7:28:56 AM 9.3615 8:19:29 AM 0.7376 April 20, 2023 10:28:56 AM 9.3615 8:19:29 AM 0.7454 April 20, 2023 10:28:56 AM 9.3615 8:19:29 AM 0.7447 April 20, 2023 10:28:56 AM 9.3615 8:19:29 AM 0.7447 April 20, 2023 11:28:56 AM 9.3463 10:19:29 AM 0.7376 April 20, 2023 11:28:56 AM 9.3312 11:19:29 AM 0.7376 April 20, 2023 12:28:56 PM 9.3103 2:19:29 PM 0.7317 April 20, 2023 12:28:56 PM 9.3103 2:19:29 PM 0.7317 April 20, 2023 12:28:56 PM 9.3103 2:19:29 PM 0.7145 April 20, 2023 4:28:56 PM 9.3103 2:19:29 PM 0.7145 April 20, 2023 4:28:56 PM 9.2986 4:19:29 PM 0.7145 April 20, 2023 3:28:56 PM 9.2986 4:19:29 PM 0.7145 April 20, 2023 5:28:56 PM 9.2983 5:19:29 PM 0.714 April 20, 2023 7:28:56 PM 9.2852 7:19:29 PM 0.704 April 20, 2023 7:28:56 PM 9.2852 7:19:29 PM 0.7086 April 20, 2023 11:28:56 PM 9.2867 11:19:29 PM 0.6985 April 20, 2023 12:28:56 PM 9.2867 11:19:29 PM 0.6985 April 20, 2023 12:28:56 PM 9.2867 11:19:29 PM 0.6985 April 20, 2023 12:28:56 PM 9.267 11:19:29 PM 0.6985 April 20, 2023 12:28:56 PM 9.267 10:19:29 PM 0.6985 April 20, 2023 12:28:56 PM 9.267 10:19:29 PM 0.6985 April 20, 2023 12:28:56 PM 9.267 10:19:29 PM 0.6985 April 20, 2023 12:28:56 PM 9.267 10:19:29 PM 0.6986 April 20, 2023 12:28:56 PM 9.267 10:19:29 PM 0.6985 April 20, 2023 12:28:56 PM 9.267 10:19:29 PM 0.6986 April 20, 2023 12:28:56 PM 9.267 10:19:29 PM 0.6985 April 20, 2023 12:28:56 PM 9.267 10:19:29 PM 0.6986 April 20, 2023 12:28:56 PM 9.267 10:19:29 PM 0.6986 April 21, 2023 12:28:56 PM 9.2087 7:19:29 AM 0.6987 April 21, 2023 12:28:56 PM					
April 20, 2023					
April 20, 2023					
April 20, 2023					
April 20, 2023					
April 20, 2023					
April 20, 2023					
April 20, 2023					
April 20, 2023				5:19:29 AM	
April 20, 2023					
April 20, 2023	April 20, 2023	7:28:56 AM	9.3605	7:19:29 AM	0.7376
April 20, 2023 10:28:56 AM 9.3463 10:19:29 AM 0.7347 April 20, 2023 11:28:56 AM 9.3312 11:19:29 PM 0.7317 April 20, 2023 12:28:56 PM 9.3103 2:19:29 PM 0.7219 April 20, 2023 2:28:56 PM 9.3103 2:19:29 PM 0.7219 April 20, 2023 3:28:56 PM 9.3103 3:19:29 PM 0.7219 April 20, 2023 4:28:56 PM 9.3003 3:19:29 PM 0.7143 April 20, 2023 4:28:56 PM 9.2986 4:19:29 PM 0.7143 April 20, 2023 5:28:56 PM 9.2985 5:19:29 PM 0.7074 April 20, 2023 6:28:56 PM 9.2985 5:19:29 PM 0.7074 April 20, 2023 6:28:56 PM 9.2985 5:19:29 PM 0.7074 April 20, 2023 8:28:56 PM 9.2852 7:19:29 PM 0.6985 April 20, 2023 8:28:56 PM 9.2852 7:19:29 PM 0.7031 April 20, 2023 8:28:56 PM 9.2852 7:19:29 PM 0.7031 April 20, 2023 8:28:56 PM 9.2857 8:19:29 PM 0.7031 April 20, 2023 10:28:56 PM 9.2858 9:19:29 PM 0.7086 April 20, 2023 10:28:56 PM 9.2677 10:19:29 PM 0.6969 April 20, 2023 11:28:56 PM 9.2677 11:19:29 PM 0.6969 April 21, 2023 12:28:56 AM 9.2567 12:19:29 AM 0.6959 April 21, 2023 12:28:56 AM 9.2567 12:19:29 AM 0.6959 April 21, 2023 3:28:56 AM 9.2408 2:19:29 AM 0.6945 April 21, 2023 3:28:56 AM 9.2408 2:19:29 AM 0.6945 April 21, 2023 4:28:56 AM 9.2218 5:19:29 AM 0.6694 April 21, 2023 5:28:56 AM 9.2218 5:19:29 AM 0.6694 April 21, 2023 4:28:56 AM 9.2218 5:19:29 AM 0.6694 April 21, 2023 4:28:56 AM 9.2218 5:19:29 AM 0.6694 April 21, 2023 4:28:56 AM 9.2218 5:19:29 AM 0.6617 April 21, 2023 4:28:56 AM 9.2138 6:19:29 AM 0.6617 April 21, 2023 4:28:56 AM 9.2138 6:19:29 AM 0.6617 April 21, 2023 4:28:56 AM 9.2138 6:19:29 AM 0.6617 April 21, 2023 3:28:56 AM 9.2138 6:19:29 AM 0.6617 April 21, 2023 4:28:56 AM 9.208 8:19:29 AM 0.6617 April 21, 2023 3:28:56 AM 9.208 8:19:29 AM 0.6614 April 21, 2023 4:28:56 AM 9.1737 10:19:29 PM 0.6628 April 21, 2023 3:28:56 AM 9.1737 10:19:29 PM 0.6628 April 21, 2023 3:28:56 AM 9.1737 10:19:29 PM 0.6046 April 21, 2023 3:28:56 PM 9.118 10:19:29 PM 0.6046 April 21, 2023 4:28:56 PM 9.118 10:19:29 PM 0.6046 April 21, 2023 4:28:56 PM 9.1196 3:19:29 PM 0.6016 April 21, 2023 4:28:56 PM 9.1095 5:19:29 PM 0.6016 April 21, 2023 4:28:56 AM 9.0094 1:19:29 P	April 20, 2023	8:28:56 AM	9.3615	8:19:29 AM	0.7452
April 20, 2023 11:28:56 AM 9.3210 11:19:29 PM 0.7316 April 20, 2023 12:28:56 PM 9.3103 21:19:29 PM 0.7219 April 20, 2023 2:28:56 PM 9.3103 21:19:29 PM 0.7219 April 20, 2023 3:28:56 PM 9.3103 21:19:29 PM 0.7219 April 20, 2023 4:28:56 PM 9.3003 3:19:29 PM 0.7145 April 20, 2023 4:28:56 PM 9.2986 4:19:29 PM 0.7145 April 20, 2023 6:28:56 PM 9.2983 5:19:29 PM 0.7074 April 20, 2023 6:28:56 PM 9.2983 5:19:29 PM 0.7074 April 20, 2023 6:28:56 PM 9.2981 5:19:29 PM 0.7074 April 20, 2023 7:28:56 PM 9.2817 6:19:29 PM 0.7074 April 20, 2023 8:28:56 PM 9.2817 8:19:29 PM 0.7074 April 20, 2023 8:28:56 PM 9.2817 8:19:29 PM 0.7086 April 20, 2023 10:28:56 PM 9.2817 8:19:29 PM 0.6985 April 20, 2023 10:28:56 PM 9.2817 10:19:29 PM 0.6966 April 20, 2023 11:28:56 PM 9.2617 10:19:29 PM 0.6966 April 21, 2023 11:28:56 AM 9.2567 10:19:29 PM 0.6966 April 21, 2023 12:28:56 AM 9.2567 11:19:29 AM 0.6995 April 21, 2023 12:28:56 AM 9.2567 11:19:29 AM 0.6995 April 21, 2023 2:28:56 AM 9.2408 2:19:29 AM 0.6945 April 21, 2023 3:28:56 AM 9.2413 3:19:29 AM 0.6945 April 21, 2023 3:28:56 AM 9.2248 2:19:29 AM 0.6945 April 21, 2023 4:28:56 AM 9.2226 4:19:29 AM 0.6687 April 21, 2023 4:28:56 AM 9.2218 5:19:29 AM 0.6687 April 21, 2023 5:28:56 AM 9.2218 5:19:29 AM 0.6641 April 21, 2023 6:28:56 AM 9.2218 5:19:29 AM 0.6641 April 21, 2023 7:28:56 AM 9.2057 7:19:29 AM 0.6641 April 21, 2023 8:28:56 AM 9.2057 7:19:29 AM 0.6641 April 21, 2023 8:28:56 AM 9.2057 7:19:29 AM 0.6641 April 21, 2023 8:28:56 AM 9.1852 9:19:29 AM 0.66467 April 21, 2023 8:28:56 AM 9.1852 9:19:29 AM 0.66467 April 21, 2023 8:28:56 AM 9.1852 9:19:29 AM 0.66467 April 21, 2023 8:28:56 AM 9.1852 9:19:29 AM 0.66467 April 21, 2023 8:28:56 AM 9.1852 9:19:29 PM 0.6106 April 21, 2023 8:28:56 PM 9.1136 8:19:29 PM 0.6182 April 21, 2023 8:28:56 PM 9.1138 8:19:29 PM 0.6182 April 21, 2023 8:28:56 PM 9.1138 10:19:29 PM 0.6046 April 21, 2023 8:28:56 PM 9.1138 10:19:29 PM 0.6046 April 21, 2023 8:28:56 PM 9.1138 10:19:29 PM 0.6046 April 22, 2023 8:28:56 AM 9.0094 11:19:29 PM 0.6046 April 22, 2023 8:28:56 AM 9.0097		9:28:56 AM	9.3544	9:19:29 AM	0.744
April 20, 2023 12:28:56 PM 9.3208 12:19:29 PM 0.7317 April 20, 2023 1:28:56 PM 9.3157 1:19:29 PM 0.7219 April 20, 2023 1:28:56 PM 9.3003 2:19:29 PM 0.7219 April 20, 2023 4:28:56 PM 9.3003 3:19:29 PM 0.7145 April 20, 2023 5:28:56 PM 9.2986 4:19:29 PM 0.704 April 20, 2023 5:28:56 PM 9.2852 7:19:29 PM 0.7074 April 20, 2023 8:28:56 PM 9.2852 7:19:29 PM 0.6985 April 20, 2023 8:28:56 PM 9.2858 9:19:29 PM 0.7031 April 20, 2023 8:28:56 PM 9.2858 9:19:29 PM 0.6969 April 20, 2023 11:28:56 PM 9.267 10:19:29 PM 0.6969 April 21, 2023 12:28:56 AM 9.267 119:29 AM 0.6969 April 21, 2023 12:28:56 AM 9.2569 12:19:29 AM 0.6954 April 21, 2023 12:28:56 AM 9.2567 1:19:29 AM 0.6961 Apri	April 20, 2023	10:28:56 AM	9.3463	10:19:29 AM	0.7447
April 20, 2023	April 20, 2023	11:28:56 AM	9.3312	11:19:29 AM	0.7376
April 20, 2023	April 20, 2023	12:28:56 PM	9.3208	12:19:29 PM	0.7317
April 20, 2023	April 20, 2023	1:28:56 PM	9.3157	1:19:29 PM	0.7269
April 20, 2023	April 20, 2023	2:28:56 PM	9.3103	2:19:29 PM	0.7219
April 20, 2023	April 20, 2023	3:28:56 PM	9.3003	3:19:29 PM	0.7145
April 20, 2023 6:28:56 PM 9.2917 6:19:29 PM 0.7074 April 20, 2023 7:28:56 PM 9.2852 7:19:29 PM 0.6985 April 20, 2023 8:28:56 PM 9.2817 8:19:29 PM 0.7081 April 20, 2023 9:28:56 PM 9.2858 9:19:29 PM 0.6969 April 20, 2023 11:28:56 PM 9.2617 11:19:29 PM 0.6966 April 21, 2023 12:28:56 AM 9.2567 11:19:29 AM 0.6995 April 21, 2023 1:28:56 AM 9.2567 1:19:29 AM 0.6995 April 21, 2023 3:28:56 AM 9.2408 2:19:29 AM 0.6945 April 21, 2023 3:28:56 AM 9.2218 5:19:29 AM 0.6838 April 21, 2023 3:28:56 AM 9.2218 5:19:29 AM 0.6687 April 21, 2023 5:28:56 AM 9.2218 6:19:29 AM 0.6687 April 21, 2023 7:28:56 AM 9.2057 7:19:29 AM 0.6614 April 21, 2023 8:28:56 AM 9.2077 7:19:29 AM 0.6514 Apri	April 20, 2023	4:28:56 PM	9.2986	4:19:29 PM	0.7143
April 20, 2023 7:28:56 PM 9.2852 7:19:29 PM 0.6985 April 20, 2023 8:28:56 PM 9.2817 8:19:29 PM 0.7031 April 20, 2023 9:28:56 PM 9.2858 9:19:29 PM 0.7086 April 20, 2023 10:28:56 PM 9.2677 10:19:29 PM 0.6966 April 21, 2023 12:28:56 AM 9.2569 12:19:29 AM 0.6959 April 21, 2023 12:28:56 AM 9.2569 12:19:29 AM 0.6959 April 21, 2023 12:28:56 AM 9.2569 12:19:29 AM 0.6959 April 21, 2023 12:28:56 AM 9.2408 2:19:29 AM 0.6945 April 21, 2023 3:28:56 AM 9.2413 3:19:29 AM 0.6687 April 21, 2023 5:28:56 AM 9.2218 5:19:29 AM 0.6687 April 21, 2023 5:28:56 AM 9.2138 6:19:29 AM 0.6614 April 21, 2023 3:28:56 AM 9.208 8:19:29 AM 0.6519 April 21, 2023 3:28:56 AM 9.208 8:19:29 AM 0.6519 A	April 20, 2023	5:28:56 PM	9.2983	5:19:29 PM	0.71
April 20, 2023 8:28:56 PM 9.2817 8:19:29 PM 0.7031 April 20, 2023 9:28:56 PM 9.2858 9:19:29 PM 0.6969 April 20, 2023 10:28:56 PM 9.267 10:19:29 PM 0.6969 April 20, 2023 11:28:56 PM 9.2617 11:19:29 PM 0.6969 April 21, 2023 12:28:56 AM 9.2569 12:19:29 AM 0.6959 April 21, 2023 12:28:56 AM 9.2567 1:19:29 AM 0.6959 April 21, 2023 2:28:56 AM 9.2408 2:19:29 AM 0.6955 April 21, 2023 3:28:56 AM 9.2408 2:19:29 AM 0.6955 April 21, 2023 3:28:56 AM 9.2413 3:19:29 AM 0.6838 April 21, 2023 4:28:56 AM 9.2218 5:19:29 AM 0.6838 April 21, 2023 4:28:56 AM 9.2218 5:19:29 AM 0.6681 April 21, 2023 6:28:56 AM 9.2118 5:19:29 AM 0.6641 April 21, 2023 6:28:56 AM 9.2118 5:19:29 AM 0.6641 April 21, 2023 7:28:56 AM 9.2138 6:19:29 AM 0.66510 April 21, 2023 9:28:56 AM 9.2008 8:19:29 AM 0.66510 April 21, 2023 9:28:56 AM 9.2008 8:19:29 AM 0.6519 April 21, 2023 10:28:56 AM 9.1852 9:19:29 AM 0.6519 April 21, 2023 11:28:56 AM 9.1852 9:19:29 AM 0.6519 April 21, 2023 11:28:56 AM 9.1626 11:19:29 AM 0.6647 April 21, 2023 11:28:56 AM 9.1626 11:19:29 AM 0.6424 April 21, 2023 12:28:56 PM 9.1464 12:19:29 PM 0.6322 April 21, 2023 12:28:56 PM 9.1464 12:19:29 PM 0.6322 April 21, 2023 12:28:56 PM 9.1376 11:19:29 PM 0.6224 April 21, 2023 3:28:56 PM 9.1146 11:19:29 PM 0.6024 April 21, 2023 3:28:56 PM 9.1146 11:19:29 PM 0.6018 April 21, 2023 3:28:56 PM 9.1196 3:19:29 PM 0.6116 April 21, 2023 3:28:56 PM 9.1196 3:19:29 PM 0.6018 April 21, 2023 3:28:56 PM 9.1095 1:19:29 PM 0.6016 April 21, 2023 6:28:56 PM 9.1095 9:19:29 PM 0.6016 April 21, 2023 6:28:56 PM 9.1095 9:19:29 PM 0.6014 April 21, 2023 7:28:56 PM 9.1095 9:19:29 PM 0.6014 April 21, 2023 3:28:56 PM 9.1095 9:19:29 PM 0.6016 April 21, 2023 3:28:56 PM 9.1095 9:19:29 PM 0.6014 April 22, 2023 1:28:56 PM 9.1095 9:19:29 PM 0.6016 April 22, 2023 3:28:56 PM 9.1095 11:19:29 PM 0.6046 April 22, 2023 3:28:56 PM 9.1095 11:19:29 PM 0.6046 April 22, 2023 3:28:56 AM 9.0941 1:19:29 AM 0.6084 April 22, 2023 3:28:56 AM 9.0941 1:19:29 AM 0.5095 April 22, 2023 3:28:56 AM 9.0941 1:19:29 AM 0.5014 April 22, 2023 3:28:56 AM 9.0949	April 20, 2023	6:28:56 PM	9.2917	6:19:29 PM	0.7074
April 20, 2023 9:28:56 PM 9.2858 9:19:29 PM 0.6969 April 20, 2023 10:28:56 PM 9.267 10:19:29 PM 0.6969 April 20, 2023 11:28:56 PM 9.2617 11:19:29 PM 0.6966 April 21, 2023 12:28:56 AM 9.2569 12:19:29 AM 0.6895 April 21, 2023 12:8:56 AM 9.2408 2:19:29 AM 0.6959 April 21, 2023 3:28:56 AM 9.2413 3:19:29 AM 0.6838 April 21, 2023 3:28:56 AM 9.2226 4:19:29 AM 0.6838 April 21, 2023 5:28:56 AM 9.2218 5:19:29 AM 0.6701 April 21, 2023 6:28:56 AM 9.2138 6:19:29 AM 0.6617 April 21, 2023 7:28:56 AM 9.2008 8:19:29 AM 0.6514 April 21, 2023 3:28:56 AM 9.2008 8:19:29 AM 0.6514 April 21, 2023 3:28:56 AM 9.1852 9:19:29 AM 0.6514 April 21, 2023 12:28:56 AM 9.1852 9:19:29 AM 0.6514 Ap	April 20, 2023	7:28:56 PM	9.2852	7:19:29 PM	0.6985
April 20, 2023 10:28:56 PM 9.267 10:19:29 PM 0.6969 April 20, 2023 11:28:56 PM 9.2617 11:19:29 PM 0.6966 April 21, 2023 12:28:56 AM 9.2569 12:19:29 AM 0.6895 April 21, 2023 12:28:56 AM 9.2567 1:19:29 AM 0.6995 April 21, 2023 2:28:56 AM 9.2408 2:19:29 AM 0.6995 April 21, 2023 3:28:56 AM 9.2408 2:19:29 AM 0.6838 April 21, 2023 4:28:56 AM 9.2218 5:19:29 AM 0.6838 April 21, 2023 4:28:56 AM 9.2218 5:19:29 AM 0.6838 April 21, 2023 5:28:56 AM 9.2218 5:19:29 AM 0.6687 April 21, 2023 6:28:56 AM 9.2138 6:19:29 AM 0.6694 April 21, 2023 7:28:56 AM 9.2138 6:19:29 AM 0.6617 April 21, 2023 7:28:56 AM 9.2057 7:19:29 AM 0.6617 April 21, 2023 8:28:56 AM 9.2057 7:19:29 AM 0.6519 April 21, 2023 9:28:56 AM 9.1852 9:19:29 AM 0.6519 April 21, 2023 10:28:56 AM 9.1852 9:19:29 AM 0.6519 April 21, 2023 11:28:56 AM 9.1626 11:19:29 AM 0.6424 April 21, 2023 11:28:56 AM 9.1626 11:19:29 AM 0.6424 April 21, 2023 12:28:56 PM 9.1464 12:19:29 PM 0.6322 April 21, 2023 12:28:56 PM 9.1376 11:19:29 PM 0.628 April 21, 2023 12:28:56 PM 9.1376 11:19:29 PM 0.6182 April 21, 2023 3:28:56 PM 9.1196 3:19:29 PM 0.6182 April 21, 2023 4:28:56 PM 9.1196 3:19:29 PM 0.6182 April 21, 2023 4:28:56 PM 9.1197 3:19:29 PM 0.6182 April 21, 2023 5:28:56 PM 9.1197 4:19:29 PM 0.6048 April 21, 2023 6:28:56 PM 9.1095 5:19:29 PM 0.6004 April 21, 2023 6:28:56 PM 9.1095 5:19:29 PM 0.6004 April 21, 2023 6:28:56 PM 9.1095 19:19:29 PM 0.6004 April 21, 2023 10:28:56 PM 9.118 10:19:29 PM 0.6004 April 21, 2023 10:28:56 PM 9.1099 9:19:29 PM 0.6004 April 22, 2023 10:28:56 PM 9.1099 9:19:29 PM 0.6004 April 22, 2023 12:28:56 AM 9.0941 1:19:29 AM 0.6004 April 22, 2023 12:28:56 AM 9.0941 1:19:29 AM 0.6004 April 22, 2023 12:28:56 AM 9.0941 1:19:29 AM 0.6004 April 22, 2023 12:28:56 PM 9.1019 9:19:29 PM 0.6106 April 22, 2023 3:28:56 AM 9.0941 1:19:29 AM 0.6007 April 22, 2023 3:28:56 AM 9.0941 1:19:29 AM 0.6004 April 22, 2023 12:28:56 AM 9.0941 1:19:29 AM 0.6007 April 22, 2023 3:28:56 AM 9.0941 1:19:29 AM 0.5006 April 22, 2023 3:28:56 AM 9.0941 1:19:29 AM 0.5006 April 22, 2023 3:28:56 AM 9.0997	April 20, 2023	8:28:56 PM	9.2817	8:19:29 PM	0.7031
April 20, 2023 11:28:56 PM 9.2617 11:19:29 PM 0.6966 April 21, 2023 12:28:56 AM 9.2569 12:19:29 AM 0.6959 April 21, 2023 12:28:56 AM 9.2567 1:19:29 AM 0.6959 April 21, 2023 2:28:56 AM 9.2408 2:19:29 AM 0.6945 April 21, 2023 3:28:56 AM 9.2408 2:19:29 AM 0.6945 April 21, 2023 4:28:56 AM 9.2408 2:19:29 AM 0.6938 April 21, 2023 4:28:56 AM 9.2218 5:19:29 AM 0.6687 April 21, 2023 5:28:56 AM 9.2218 5:19:29 AM 0.6701 April 21, 2023 6:28:56 AM 9.2218 5:19:29 AM 0.6661 April 21, 2023 7:28:56 AM 9.2038 6:19:29 AM 0.6617 April 21, 2023 8:28:56 AM 9.2057 7:19:29 AM 0.6617 April 21, 2023 7:28:56 AM 9.2008 8:19:29 AM 0.6514 April 21, 2023 9:28:56 AM 9.1852 9:19:29 AM 0.6519 April 21, 2023 10:28:56 AM 9.1852 9:19:29 AM 0.6519 April 21, 2023 11:28:56 AM 9.1852 9:19:29 AM 0.6427 April 21, 2023 12:28:56 PM 9.1464 12:19:29 PM 0.6322 April 21, 2023 12:28:56 PM 9.1464 12:19:29 PM 0.6322 April 21, 2023 12:28:56 PM 9.1269 2:19:29 PM 0.6324 April 21, 2023 3:28:56 PM 9.1269 2:19:29 PM 0.6182 April 21, 2023 3:28:56 PM 9.1196 3:19:29 PM 0.6182 April 21, 2023 4:28:56 PM 9.1196 3:19:29 PM 0.6182 April 21, 2023 5:28:56 PM 9.1196 3:19:29 PM 0.6104 April 21, 2023 6:28:56 PM 9.1087 6:19:29 PM 0.6004 April 21, 2023 7:28:56 PM 9.1087 6:19:29 PM 0.6004 April 21, 2023 7:28:56 PM 9.1087 6:19:29 PM 0.6004 April 21, 2023 7:28:56 PM 9.1099 9:19:29 PM 0.6006 April 21, 2023 7:28:56 PM 9.1099 9:19:29 PM 0.6006 April 21, 2023 1:28:56 PM 9.1099 9:19:29 PM 0.6004 April 22, 2023 1:28:56 PM 9.1091 11:19:29 AM 0.6004 April 22, 2023 1:28:56 AM 9.0941 1:19:29 AM 0.6004 April 22, 2023 1:28:56 AM 9.0941 1:19:29 AM 0.6004 April 22, 2023 1:28:56 AM 9.0941 1:19:29 AM 0.6004 April 22, 2023 3:28:56 AM 9.0941 1:19:29 AM 0.6004 April 22, 2023 1:28:56 AM 9.0949 9:19:29 PM 0.6105 April 22, 2023 1:28:56 AM 9.0941 1:19:29 AM 0.6005 April 22, 2023 3:28:56 AM 9.0941 1:19:29 AM 0.6005 April 22, 2023 3:28:56 AM 9.0941 1:19:29 AM 0.5014 April 22, 2023 3:28:56 AM 9.0949 8:19:29 AM 0.5014 April 22, 2023 3:28:56 AM 9.0949 8:19:29 AM 0.5014 April 22, 2023 3:28:56 AM 9.0949 8:19:29 AM	April 20, 2023	9:28:56 PM	9.2858	9:19:29 PM	0.7086
April 21, 2023 12:28:56 AM 9.2569 12:19:29 AM 0.6959 April 21, 2023 12:28:56 AM 9.2567 1:19:29 AM 0.6959 April 21, 2023 2:28:56 AM 9.2408 2:19:29 AM 0.6945 April 21, 2023 3:28:56 AM 9.2413 3:19:29 AM 0.6985 April 21, 2023 4:28:56 AM 9.2218 5:19:29 AM 0.6838 April 21, 2023 5:28:56 AM 9.2218 5:19:29 AM 0.6687 April 21, 2023 6:28:56 AM 9.2138 6:19:29 AM 0.6687 April 21, 2023 6:28:56 AM 9.2138 6:19:29 AM 0.6641 April 21, 2023 7:28:56 AM 9.2057 7:19:29 AM 0.6617 April 21, 2023 8:28:56 AM 9.2057 7:19:29 AM 0.6519 April 21, 2023 9:28:56 AM 9.2008 8:19:29 AM 0.6519 April 21, 2023 10:28:56 AM 9.1852 9:19:29 AM 0.6519 April 21, 2023 10:28:56 AM 9.1852 9:19:29 AM 0.6519 April 21, 2023 11:28:56 AM 9.1626 11:19:29 AM 0.6467 April 21, 2023 11:28:56 AM 9.1626 11:19:29 AM 0.6324 April 21, 2023 12:28:56 PM 9.1464 12:19:29 PM 0.6328 April 21, 2023 12:28:56 PM 9.1376 11:19:29 PM 0.628 April 21, 2023 3:28:56 PM 9.1269 2:19:29 PM 0.6182 April 21, 2023 3:28:56 PM 9.1147 4:19:29 PM 0.6018 April 21, 2023 3:28:56 PM 9.1095 5:19:29 PM 0.6018 April 21, 2023 5:28:56 PM 9.1095 5:19:29 PM 0.6016 April 21, 2023 5:28:56 PM 9.1095 5:19:29 PM 0.6016 April 21, 2023 7:28:56 PM 9.1095 5:19:29 PM 0.6016 April 21, 2023 7:28:56 PM 9.1095 9:19:29 PM 0.6002 April 21, 2023 7:28:56 PM 9.1095 9:19:29 PM 0.6004 April 21, 2023 7:28:56 PM 9.1095 9:19:29 PM 0.6004 April 21, 2023 10:28:56 PM 9.1095 9:19:29 PM 0.6016 April 21, 2023 10:28:56 PM 9.1099 9:19:29 PM 0.6016 April 22, 2023 12:28:56 AM 9.0097 3:19:29 AM 0.6014 April 22, 2023 12:28:56 AM 9.0097 3:19:29 AM 0.6014 April 22, 2023 12:28:56 AM 9.0097 3:19:29 AM 0.6014 April 22, 2023 3:28:56 AM 9.0097 3:19:29 AM 0.6014 April 22, 2023 3:28:56 AM 9.0097 3:19:29 AM 0.6014 April 22, 2023 3:28:56 AM 9.0097 3:19:29 AM 0.6014 April 22, 2023 3:28:56 AM 9.0097 3:19:29 AM 0.5814 April 22, 2023 3:28:56 AM 9.0097 3:19:29 AM 0.5814 April 22, 2023 3:28:56 AM 9.0097 3:19:29 AM 0.5814 April 22, 2023 3:28:56 AM 9.0097 3:19:29 AM 0.5814 April 22, 2023 3:28:56 AM 9.0097 10:19:29 AM 0.5958 April 22, 2023 3:28:56 AM 9.0099 7:19:2	April 20, 2023	10:28:56 PM	9.267	10:19:29 PM	0.6969
April 21, 2023 1:28:56 AM 9.2567 1:19:29 AM 0.6959 April 21, 2023 2:28:56 AM 9.2408 2:19:29 AM 0.6945 April 21, 2023 3:28:56 AM 9.2413 3:19:29 AM 0.6838 April 21, 2023 4:28:56 AM 9.2218 5:19:29 AM 0.6838 April 21, 2023 5:28:56 AM 9.2218 5:19:29 AM 0.6701 April 21, 2023 5:28:56 AM 9.2218 5:19:29 AM 0.6701 April 21, 2023 6:28:56 AM 9.2138 6:19:29 AM 0.6641 April 21, 2023 7:28:56 AM 9.2057 7:19:29 AM 0.6617 April 21, 2023 8:28:56 AM 9.2008 8:19:29 AM 0.6564 April 21, 2023 9:28:56 AM 9.2008 8:19:29 AM 0.6554 April 21, 2023 10:28:56 AM 9.1852 9:19:29 AM 0.6564 April 21, 2023 10:28:56 AM 9.1626 11:19:29 AM 0.6467 April 21, 2023 11:28:56 AM 9.1626 11:19:29 AM 0.6424 April 21, 2023 12:28:56 PM 9.1464 12:19:29 PM 0.6322 April 21, 2023 12:28:56 PM 9.1376 11:19:29 PM 0.622 April 21, 2023 12:28:56 PM 9.1269 2:19:29 PM 0.6182 April 21, 2023 3:28:56 PM 9.1147 4:19:29 PM 0.6018 April 21, 2023 4:28:56 PM 9.1196 3:19:29 PM 0.6018 April 21, 2023 6:28:56 PM 9.1054 7:19:29 PM 0.6018 April 21, 2023 6:28:56 PM 9.1095 5:19:29 PM 0.6018 April 21, 2023 6:28:56 PM 9.1095 5:19:29 PM 0.6018 April 21, 2023 6:28:56 PM 9.1095 5:19:29 PM 0.6014 April 21, 2023 6:28:56 PM 9.1095 19:19:29 PM 0.6004 April 21, 2023 6:28:56 PM 9.1099 9:19:29 PM 0.6004 April 21, 2023 10:28:56 PM 9.1095 9:19:29 PM 0.6004 April 21, 2023 10:28:56 PM 9.1099 9:19:29 PM 0.6004 April 21, 2023 10:28:56 PM 9.1099 9:19:29 PM 0.6004 April 22, 2023 11:28:56 AM 9.0091 11:19:29 AM 0.6046 April 22, 2023 12:28:56 AM 9.0091 11:19:29 AM 0.6046 April 22, 2023 12:28:56 AM 9.0091 11:19:29 AM 0.608 April 22, 2023 12:28:56 AM 9.0097 3:19:29 AM 0.608 April 22, 2023 3:28:56 AM 9.0097 3:19:29 AM 0.608 April 22, 2023 3:28:56 AM 9.0097 3:19:29 AM 0.608 April 22, 2023 3:28:56 AM 9.0097 1:19:29 AM 0.5014 April 22, 2023 3:28:56 AM 9.0097 1:19:29 AM 0.5014 April 22, 2023 3:28:56 AM 9.0097 1:19:29 AM 0.5014 April 22, 2023 3:28:56 AM 9.0097 1:19:29 AM 0.5014 April 22, 2023 3:28:56 AM 9.0097 1:19:29 AM 0.5014 April 22, 2023 3:28:56 AM 9.0097 1:19:29 AM 0.5014 April 22, 2023 3:28:56 AM 9.0097 10:19:29	April 20, 2023	11:28:56 PM	9.2617	11:19:29 PM	0.6966
April 21, 2023 2:28:56 AM 9.2408 2:19:29 AM 0.6945 April 21, 2023 3:28:56 AM 9.2413 3:19:29 AM 0.6838 April 21, 2023 4:28:56 AM 9.2218 5:19:29 AM 0.6687 April 21, 2023 4:28:56 AM 9.2218 5:19:29 AM 0.6701 April 21, 2023 5:28:56 AM 9.2218 5:19:29 AM 0.6701 April 21, 2023 7:28:56 AM 9.2057 7:19:29 AM 0.6617 April 21, 2023 7:28:56 AM 9.2057 7:19:29 AM 0.6617 April 21, 2023 8:28:56 AM 9.2008 8:19:29 AM 0.6514 April 21, 2023 9:28:56 AM 9.1852 9:19:29 AM 0.6519 April 21, 2023 10:28:56 AM 9.1852 9:19:29 AM 0.6519 April 21, 2023 11:28:56 AM 9.1737 10:19:29 AM 0.6424 April 21, 2023 11:28:56 AM 9.1626 11:19:29 AM 0.6424 April 21, 2023 12:28:56 PM 9.1376 11:19:29 PM 0.6322 April 21, 2023 12:28:56 PM 9.1376 11:19:29 PM 0.628 April 21, 2023 2:28:56 PM 9.1269 2:19:29 PM 0.6182 April 21, 2023 3:28:56 PM 9.1196 3:19:29 PM 0.6182 April 21, 2023 4:28:56 PM 9.1196 3:19:29 PM 0.6182 April 21, 2023 4:28:56 PM 9.1196 5:19:29 PM 0.6018 April 21, 2023 5:28:56 PM 9.1095 5:19:29 PM 0.6018 April 21, 2023 6:28:56 PM 9.1095 5:19:29 PM 0.6016 April 21, 2023 6:28:56 PM 9.1095 5:19:29 PM 0.6004 April 21, 2023 6:28:56 PM 9.1095 5:19:29 PM 0.6004 April 21, 2023 6:28:56 PM 9.1095 5:19:29 PM 0.6004 April 21, 2023 7:28:56 PM 9.1095 1:19:29 PM 0.6004 April 21, 2023 1:28:56 PM 9.1018 8:19:29 PM 0.6004 April 21, 2023 1:28:56 PM 9.1018 8:19:29 PM 0.6006 April 21, 2023 1:28:56 PM 9.1018 8:19:29 PM 0.6006 April 22, 2023 1:28:56 AM 9.0994 1:19:29 AM 0.6104 April 22, 2023 1:28:56 AM 9.0994 1:19:29 AM 0.6104 April 22, 2023 1:28:56 AM 9.0994 1:19:29 AM 0.6004 April 22, 2023 3:28:56 AM 9.0997 3:19:29 AM 0.6007 April 22, 2023 3:28:56 AM 9.0997 3:19:29 AM 0.6007 April 22, 2023 3:28:56 AM 9.0997 3:19:29 AM 0.6007 April 22, 2023 3:28:56 AM 9.0997 3:19:29 AM 0.5919 April 22, 2023 3:28:56 AM 9.0997 3:19:29 AM 0.5919 April 22, 2023 3:28:56 AM 9.0997 3:19:29 AM 0.5919 April 22, 2023 3:28:56 AM 9.0997 3:19:29 AM 0.5919 April 22, 2023 3:28:56 AM 9.0997 3:19:29 AM 0.5919 April 22, 2023 3:28:56 AM 9.0997 3:19:29 AM 0.5919 April 22, 2023 3:28:56 AM 9.0997 3:19:29 AM 0.591	April 21, 2023	12:28:56 AM	9.2569	12:19:29 AM	0.6895
April 21, 2023 3:28:56 AM 9.2413 3:19:29 AM 0.6838 April 21, 2023 4:28:56 AM 9.2226 4:19:29 AM 0.6687 April 21, 2023 5:28:56 AM 9.2218 5:19:29 AM 0.6701 April 21, 2023 5:28:56 AM 9.2138 6:19:29 AM 0.6617 April 21, 2023 8:28:56 AM 9.2008 8:19:29 AM 0.6514 April 21, 2023 9:28:56 AM 9.2008 8:19:29 AM 0.6564 April 21, 2023 10:28:56 AM 9.1852 9:19:29 AM 0.6519 April 21, 2023 10:28:56 AM 9.1852 9:19:29 AM 0.6617 April 21, 2023 11:28:56 AM 9.1626 11:19:29 AM 0.6467 April 21, 2023 12:28:56 PM 9.1464 12:19:29 PM 0.6322 April 21, 2023 12:28:56 PM 9.1269 2:19:29 PM 0.628 April 21, 2023 3:28:56 PM 9.1269 2:19:29 PM 0.6182 April 21, 2023 3:28:56 PM 9.1196 3:19:29 PM 0.6182 Ap	April 21, 2023	1:28:56 AM	9.2567	1:19:29 AM	0.6959
April 21, 2023 4:28:56 AM 9.2226 4:19:29 AM 0.6687 April 21, 2023 5:28:56 AM 9.2218 5:19:29 AM 0.6701 April 21, 2023 6:28:56 AM 9.2138 6:19:29 AM 0.6641 April 21, 2023 8:28:56 AM 9.2008 8:19:29 AM 0.6519 April 21, 2023 9:28:56 AM 9.1852 9:19:29 AM 0.6519 April 21, 2023 10:28:56 AM 9.1852 9:19:29 AM 0.6617 April 21, 2023 11:28:56 AM 9.1626 11:19:29 AM 0.6467 April 21, 2023 11:28:56 PM 9.1626 11:19:29 AM 0.6424 April 21, 2023 12:28:56 PM 9.1626 11:19:29 PM 0.6228 April 21, 2023 12:28:56 PM 9.1464 12:19:29 PM 0.628 April 21, 2023 3:28:56 PM 9.1196 3:19:29 PM 0.6182 April 21, 2023 3:28:56 PM 9.1197 5:19:29 PM 0.6016 April 21, 2023 5:28:56 PM 9.1087 6:19:29 PM 0.6016	April 21, 2023	2:28:56 AM	9.2408	2:19:29 AM	0.6945
April 21, 2023 5:28:56 AM 9.2218 5:19:29 AM 0.6701 April 21, 2023 6:28:56 AM 9.2138 6:19:29 AM 0.6641 April 21, 2023 7:28:56 AM 9.2057 7:19:29 AM 0.6617 April 21, 2023 9:28:56 AM 9.2008 8:19:29 AM 0.6519 April 21, 2023 10:28:56 AM 9.1852 9:19:29 AM 0.6467 April 21, 2023 11:28:56 AM 9.1626 11:19:29 AM 0.6424 April 21, 2023 12:28:56 PM 9.1464 12:19:29 PM 0.6322 April 21, 2023 12:28:56 PM 9.1376 1:19:29 PM 0.622 April 21, 2023 12:28:56 PM 9.1269 2:19:29 PM 0.6182 April 21, 2023 3:28:56 PM 9.1196 3:19:29 PM 0.6182 April 21, 2023 4:28:56 PM 9.1147 4:19:29 PM 0.6018 April 21, 2023 4:28:56 PM 9.1147 4:19:29 PM 0.6018 April 21, 2023 5:28:56 PM 9.1087 6:19:29 PM 0.6016 Ap		3:28:56 AM	9.2413		0.6838
April 21, 2023 6:28:56 AM 9.2138 6:19:29 AM 0.6641 April 21, 2023 7:28:56 AM 9.2057 7:19:29 AM 0.6654 April 21, 2023 8:28:56 AM 9.2008 8:19:29 AM 0.6564 April 21, 2023 9:28:56 AM 9.1852 9:19:29 AM 0.6567 April 21, 2023 10:28:56 AM 9.1737 10:19:29 AM 0.6424 April 21, 2023 11:28:56 PM 9.1464 12:19:29 PM 0.6322 April 21, 2023 1:28:56 PM 9.1376 1:19:29 PM 0.6322 April 21, 2023 3:28:56 PM 9.1376 1:19:29 PM 0.6182 April 21, 2023 3:28:56 PM 9.1196 3:19:29 PM 0.6182 April 21, 2023 3:28:56 PM 9.1197 4:19:29 PM 0.6048 April 21, 2023 5:28:56 PM 9.1087 6:19:29 PM 0.6016 April 21, 2023 5:28:56 PM 9.1087 6:19:29 PM 0.6016 April 21, 2023 7:28:56 PM 9.1113 8:19:29 PM 0.6002 Apri					
April 21, 2023 7:28:56 AM 9.2057 7:19:29 AM 0.6617 April 21, 2023 8:28:56 AM 9.2008 8:19:29 AM 0.65619 April 21, 2023 9:28:56 AM 9.1852 9:19:29 AM 0.6519 April 21, 2023 10:28:56 AM 9.1852 9:19:29 AM 0.6519 April 21, 2023 11:28:56 AM 9.1626 11:19:29 AM 0.6424 April 21, 2023 11:28:56 PM 9.1464 12:19:29 PM 0.6322 April 21, 2023 12:28:56 PM 9.1376 1:19:29 PM 0.628 April 21, 2023 2:28:56 PM 9.1269 2:19:29 PM 0.6182 April 21, 2023 3:28:56 PM 9.1196 3:19:29 PM 0.6182 April 21, 2023 4:28:56 PM 9.1196 3:19:29 PM 0.6182 April 21, 2023 4:28:56 PM 9.1197 4:19:29 PM 0.6018 April 21, 2023 4:28:56 PM 9.1095 5:19:29 PM 0.6018 April 21, 2023 6:28:56 PM 9.1095 5:19:29 PM 0.6016 April 21, 2023 6:28:56 PM 9.1095 5:19:29 PM 0.6016 April 21, 2023 7:28:56 PM 9.1087 6:19:29 PM 0.6002 April 21, 2023 8:28:56 PM 9.1113 8:19:29 PM 0.6002 April 21, 2023 9:28:56 PM 9.1113 8:19:29 PM 0.6004 April 21, 2023 10:28:56 PM 9.1118 10:19:29 PM 0.6006 April 21, 2023 10:28:56 PM 9.1118 10:19:29 PM 0.6106 April 22, 2023 11:28:56 PM 9.1094 11:19:29 PM 0.6106 April 22, 2023 12:28:56 AM 9.0941 1:19:29 PM 0.6106 April 22, 2023 1:28:56 AM 9.0941 1:19:29 AM 0.6104 April 22, 2023 3:28:56 AM 9.0941 1:19:29 AM 0.6104 April 22, 2023 3:28:56 AM 9.0994 1:19:29 AM 0.6104 April 22, 2023 3:28:56 AM 9.0997 3:19:29 AM 0.6104 April 22, 2023 3:28:56 AM 9.0997 3:19:29 AM 0.6104 April 22, 2023 3:28:56 AM 9.0997 3:19:29 AM 0.6104 April 22, 2023 3:28:56 AM 9.0997 3:19:29 AM 0.514 April 22, 2023 3:28:56 AM 9.0997 3:19:29 AM 0.5919 April 22, 2023 3:28:56 AM 9.0729 5:19:29 AM 0.5814 April 22, 2023 3:28:56 AM 9.0729 5:19:29 AM 0.5814 April 22, 2023 3:28:56 AM 9.0791 6:19:29 AM 0.5814 April 22, 2023 3:28:56 AM 9.0791 6:19:29 AM 0.5814 April 22, 2023 3:28:56 AM 9.0791 0:19:29 AM 0.5814 April 22, 2023 3:28:56 AM 9.0997 1:19:29 AM 0.5814 April 22, 2023 3:28:56 AM 9.0997 1:19:29 AM 0.5814 April 22, 2023 3:28:56 AM 9.0997 1:19:29 AM 0.5814 April 22, 2023 3:28:56 AM 9.0997 1:19:29 AM 0.5832 April 22, 2023 1:28:56 AM 9.0975 11:19:29 AM 0.5834 April 22, 2023 1:28:56 AM 9.0975 11:19:29 AM					
April 21, 2023 8:28:56 AM 9.2008 8:19:29 AM 0.6564 April 21, 2023 9:28:56 AM 9.1852 9:19:29 AM 0.6519 April 21, 2023 10:28:56 AM 9.1737 10:19:29 AM 0.6467 April 21, 2023 11:28:56 AM 9.1626 11:19:29 AM 0.6424 April 21, 2023 12:28:56 PM 9.1464 12:19:29 PM 0.622 April 21, 2023 12:28:56 PM 9.1269 2:19:29 PM 0.628 April 21, 2023 3:28:56 PM 9.1196 3:19:29 PM 0.6182 April 21, 2023 3:28:56 PM 9.1196 3:19:29 PM 0.6048 April 21, 2023 3:28:56 PM 9.1095 5:19:29 PM 0.6016 April 21, 2023 5:28:56 PM 9.1087 6:19:29 PM 0.6016 April 21, 2023 6:28:56 PM 9.1087 6:19:29 PM 0.6002 April 21, 2023 7:28:56 PM 9.1013 8:19:29 PM 0.6004 April 21, 2023 9:28:56 PM 9.1113 8:19:29 PM 0.6046 Apr					
April 21, 2023 9:28:56 AM 9:1852 9:19:29 AM 0.6519 April 21, 2023 10:28:56 AM 9:1737 10:19:29 AM 0.6467 April 21, 2023 11:28:56 AM 9:1626 11:19:29 AM 0.6424 April 21, 2023 12:28:56 PM 9:1464 12:19:29 PM 0.6328 April 21, 2023 12:28:56 PM 9:1376 1:19:29 PM 0.628 April 21, 2023 3:28:56 PM 9:1269 2:19:29 PM 0.6182 April 21, 2023 3:28:56 PM 9:1196 3:19:29 PM 0.6018 April 21, 2023 4:28:56 PM 9:1095 5:19:29 PM 0.6018 April 21, 2023 5:28:56 PM 9:1095 5:19:29 PM 0.6016 April 21, 2023 6:28:56 PM 9:1087 6:19:29 PM 0.6002 April 21, 2023 7:28:56 PM 9:1087 6:19:29 PM 0.6002 April 21, 2023 8:28:56 PM 9:1013 8:19:29 PM 0.6002 April 21, 2023 9:28:56 PM 9:1113 8:19:29 PM 0.6046 Ap					
April 21, 2023 10:28:56 AM 9.1737 10:19:29 AM 0.6467 April 21, 2023 11:28:56 AM 9.1626 11:19:29 AM 0.6424 April 21, 2023 12:28:56 PM 9.1464 12:19:29 PM 0.6322 April 21, 2023 2:28:56 PM 9.1376 1:19:29 PM 0.6322 April 21, 2023 3:28:56 PM 9.1169 2:19:29 PM 0.6182 April 21, 2023 4:28:56 PM 9.1196 3:19:29 PM 0.6116 April 21, 2023 4:28:56 PM 9.1147 4:19:29 PM 0.6018 April 21, 2023 5:28:56 PM 9.1087 6:19:29 PM 0.6016 April 21, 2023 7:28:56 PM 9.1087 6:19:29 PM 0.6002 April 21, 2023 8:28:56 PM 9.1034 7:19:29 PM 0.6002 April 21, 2023 9:28:56 PM 9.1035 11:19:29 PM 0.6002 April 21, 2023 10:28:56 PM 9.1118 10:19:29 PM 0.6046 April 22, 2023 11:28:56 PM 9.1118 10:19:29 PM 0.6106 <					
April 21, 2023 11:28:56 AM 9.1626 11:19:29 AM 0.6424 April 21, 2023 12:28:56 PM 9.1464 12:19:29 PM 0.6322 April 21, 2023 1:28:56 PM 9.1376 1:19:29 PM 0.6282 April 21, 2023 1:28:56 PM 9.1269 2:19:29 PM 0.6182 April 21, 2023 3:28:56 PM 9.1196 3:19:29 PM 0.6116 April 21, 2023 4:28:56 PM 9.1095 5:19:29 PM 0.6016 April 21, 2023 6:28:56 PM 9.1087 6:19:29 PM 0.6002 April 21, 2023 7:28:56 PM 9.1087 6:19:29 PM 0.6002 April 21, 2023 8:28:56 PM 9.1087 6:19:29 PM 0.6002 April 21, 2023 8:28:56 PM 9.1113 8:19:29 PM 0.6006 April 21, 2023 12:28:56 PM 9.1118 8:19:29 PM 0.6106 April 22, 2023 12:28:56 PM 9.1118 10:19:29 PM 0.6106 April 22, 2023 12:28:56 PM 9.1035 11:19:29 PM 0.6106 <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
April 21, 2023 12:28:56 PM 9.1464 12:19:29 PM 0.6322 April 21, 2023 1:28:56 PM 9.1376 1:19:29 PM 0.6322 April 21, 2023 2:28:56 PM 9.1269 2:19:29 PM 0.6182 April 21, 2023 3:28:56 PM 9.1196 3:19:29 PM 0.6116 April 21, 2023 4:28:56 PM 9.1197 4:19:29 PM 0.6048 April 21, 2023 5:28:56 PM 9.1095 5:19:29 PM 0.6016 April 21, 2023 6:28:56 PM 9.1087 6:19:29 PM 0.6002 April 21, 2023 7:28:56 PM 9.1087 6:19:29 PM 0.6002 April 21, 2023 9:28:56 PM 9.1094 9:19:29 PM 0.6004 April 21, 2023 10:28:56 PM 9.1118 8:19:29 PM 0.6046 April 21, 2023 12:28:56 PM 9.1019 9:19:29 PM 0.6106 April 22, 2023 12:28:56 PM 9.1012 12:19:29 PM 0.6106 April 22, 2023 12:28:56 AM 9.1012 12:19:29 AM 0.6104					
April 21, 2023 1:28:56 PM 9.1376 1:19:29 PM 0.628 April 21, 2023 2:28:56 PM 9.1269 2:19:29 PM 0.6182 April 21, 2023 3:28:56 PM 9.1196 3:19:29 PM 0.6116 April 21, 2023 3:28:56 PM 9.1197 4:19:29 PM 0.6016 April 21, 2023 5:28:56 PM 9.1095 5:19:29 PM 0.6002 April 21, 2023 6:28:56 PM 9.1087 6:19:29 PM 0.6002 April 21, 2023 7:28:56 PM 9.1087 6:19:29 PM 0.6002 April 21, 2023 8:28:56 PM 9.1013 8:19:29 PM 0.6004 April 21, 2023 9:28:56 PM 9.1113 8:19:29 PM 0.6046 April 21, 2023 10:28:56 PM 9.1015 11:19:29 PM 0.6104 April 21, 2023 12:28:56 PM 9.1118 10:19:29 PM 0.6104 April 22, 2023 12:28:56 AM 9.0121 11:19:29 PM 0.6004 April 22, 2023 12:28:56 AM 9.031 11:19:29 AM 0.6014 Ap					
April 21, 2023 2:28:56 PM 9.1269 2:19:29 PM 0.6182 April 21, 2023 3:28:56 PM 9.1196 3:19:29 PM 0.6116 April 21, 2023 4:28:56 PM 9.1147 4:19:29 PM 0.6048 April 21, 2023 6:28:56 PM 9.1087 6:19:29 PM 0.6002 April 21, 2023 6:28:56 PM 9.1087 6:19:29 PM 0.6002 April 21, 2023 7:28:56 PM 9.1054 7:19:29 PM 0.5991 April 21, 2023 8:28:56 PM 9.1113 8:19:29 PM 0.6046 April 21, 2023 9:28:56 PM 9.1099 9:19:29 PM 0.6106 April 21, 2023 10:28:56 PM 9.118 10:19:29 PM 0.6106 April 22, 2023 11:28:56 PM 9.1035 11:19:29 PM 0.6106 April 22, 2023 12:28:56 AM 9.0121 11:19:29 PM 0.6105 April 22, 2023 12:28:56 AM 9.0941 11:19:29 AM 0.608 April 22, 2023 3:28:56 AM 9.0941 11:19:29 AM 0.6004 A					
April 21, 2023 3:28:56 PM 9.1196 3:19:29 PM 0.6116 April 21, 2023 4:28:56 PM 9.1147 4:19:29 PM 0.6048 April 21, 2023 5:28:56 PM 9.1095 5:19:29 PM 0.6016 April 21, 2023 5:28:56 PM 9.1087 6:19:29 PM 0.6002 April 21, 2023 7:28:56 PM 9.1054 7:19:29 PM 0.6002 April 21, 2023 8:28:56 PM 9.1113 8:19:29 PM 0.6046 April 21, 2023 10:28:56 PM 9.1099 9:19:29 PM 0.6106 April 21, 2023 11:28:56 PM 9.1018 10:19:29 PM 0.6106 April 22, 2023 11:28:56 PM 9.1015 11:19:29 PM 0.6106 April 22, 2023 12:28:56 AM 9.01012 12:19:29 AM 0.605 April 22, 2023 12:28:56 AM 9.081 1:19:29 AM 0.6104 April 22, 2023 12:28:56 AM 9.083 2:19:29 AM 0.6005 April 22, 2023 3:28:56 AM 9.083 2:19:29 AM 0.6007 Ap					
April 21, 2023 4:28:56 PM 9.1147 4:19:29 PM 0.6048 April 21, 2023 5:28:56 PM 9.1095 5:19:29 PM 0.6016 April 21, 2023 6:28:56 PM 9.1087 6:19:29 PM 0.6002 April 21, 2023 7:28:56 PM 9.1054 7:19:29 PM 0.5991 April 21, 2023 8:28:56 PM 9.1113 8:19:29 PM 0.6046 April 21, 2023 9:28:56 PM 9.1099 9:19:29 PM 0.6106 April 21, 2023 11:28:56 PM 9.1118 10:19:29 PM 0.6106 April 22, 2023 11:28:56 PM 9.1118 10:19:29 PM 0.6104 April 22, 2023 12:28:56 AM 9.1012 12:19:29 AM 0.6105 April 22, 2023 12:28:56 AM 9.0941 1:19:29 AM 0.6104 April 22, 2023 12:28:56 AM 9.083 2:19:29 AM 0.6007 April 22, 2023 3:28:56 AM 9.0804 4:19:29 AM 0.6104 April 22, 2023 4:28:56 AM 9.0804 4:19:29 AM 0.6007 A					
April 21, 2023 5:28:56 PM 9.1095 5:19:29 PM 0.6016 April 21, 2023 6:28:56 PM 9.1087 6:19:29 PM 0.6002 April 21, 2023 7:28:56 PM 9.1087 6:19:29 PM 0.5991 April 21, 2023 7:28:56 PM 9.1054 7:19:29 PM 0.5991 April 21, 2023 9:28:56 PM 9.1113 8:19:29 PM 0.6046 April 21, 2023 10:28:56 PM 9.1099 9:19:29 PM 0.6106 April 21, 2023 10:28:56 PM 9.1018 10:19:29 PM 0.6105 April 22, 2023 11:28:56 PM 9.1012 12:19:29 PM 0.6105 April 22, 2023 12:28:56 AM 9.0941 1:19:29 AM 0.608 April 22, 2023 12:28:56 AM 9.0941 1:19:29 AM 0.6014 April 22, 2023 2:28:56 AM 9.0941 1:19:29 AM 0.6014 April 22, 2023 3:28:56 AM 9.0997 3:19:29 AM 0.6014 April 22, 2023 4:28:56 AM 9.0997 3:19:29 AM 0.6014 April 22, 2023 5:28:56 AM 9.0804 4:19:29 AM 0.6054 April 22, 2023 6:28:56 AM 9.0722 5:19:29 AM 0.5958 April 22, 2023 6:28:56 AM 9.0722 5:19:29 AM 0.5919 April 22, 2023 7:28:56 AM 9.0749 6:19:29 AM 0.5919 April 22, 2023 8:28:56 AM 9.0493 8:19:29 AM 0.5812 April 22, 2023 9:28:56 AM 9.0493 8:19:29 AM 0.5814 April 22, 2023 10:28:56 AM 9.0493 8:19:29 AM 0.5814 April 22, 2023 10:28:56 AM 9.0197 10:19:29 AM 0.5814 April 22, 2023 10:28:56 AM 9.0197 10:19:29 AM 0.5574 April 22, 2023 11:28:56 PM 8.9922 12:19:29 PM 0.5491 April 22, 2023 12:28:56 PM 8.9922 12:19:29 PM 0.5365 April 22, 2023 12:28:56 PM 8.9932 11:19:29 PM 0.5365 April 22, 2023 3:28:56 PM 8.9931 3:19:29 PM 0.5365 April 22, 2023 3:28:56 PM 8.9591 3:19:29 PM 0.5253 April 22, 2023 4:28:56 PM 8.9591 3:19:29 PM 0.5253 April 22, 2023 3:28:56 PM 8.9591 3:19:29 PM 0.5253 April 22, 2023 4:28:56 PM 8.9591 3:19:29 PM 0.5253					
April 21, 2023 6:28:56 PM 9.1087 6:19:29 PM 0.6002 April 21, 2023 7:28:56 PM 9.1054 7:19:29 PM 0.5991 April 21, 2023 8:28:56 PM 9.1113 8:19:29 PM 0.6046 April 21, 2023 9:28:56 PM 9.1118 10:19:29 PM 0.6104 April 21, 2023 11:28:56 PM 9.1035 11:19:29 PM 0.6105 April 22, 2023 12:28:56 AM 9.0012 12:19:29 AM 0.608 April 22, 2023 1:28:56 AM 9.0941 1:19:29 AM 0.604 April 22, 2023 3:28:56 AM 9.0941 1:19:29 AM 0.604 April 22, 2023 3:28:56 AM 9.097 3:19:29 AM 0.6014 April 22, 2023 3:28:56 AM 9.0804 4:19:29 AM 0.6065 April 22, 2023 5:28:56 AM 9.0722 5:19:29 AM 0.5958 April 22, 2023 6:28:56 AM 9.0722 5:19:29 AM 0.5919 April 22, 2023 7:28:56 AM 9.0609 7:19:29 AM 0.5919 April 2					
April 21, 2023 7:28:56 PM 9.1054 7:19:29 PM 0.5991 April 21, 2023 8:28:56 PM 9.1113 8:19:29 PM 0.6046 April 21, 2023 9:28:56 PM 9.1099 9:19:29 PM 0.6106 April 21, 2023 10:28:56 PM 9.1118 10:19:29 PM 0.6104 April 21, 2023 11:28:56 PM 9.1012 11:19:29 PM 0.6105 April 22, 2023 12:28:56 AM 9.091 12:19:29 AM 0.608 April 22, 2023 1:28:56 AM 9.083 2:19:29 AM 0.604 April 22, 2023 3:28:56 AM 9.0997 3:19:29 AM 0.6007 April 22, 2023 3:28:56 AM 9.0804 4:19:29 AM 0.6007 April 22, 2023 4:28:56 AM 9.0804 4:19:29 AM 0.5061 April 22, 2023 5:28:56 AM 9.0722 5:19:29 AM 0.5958 April 22, 2023 7:28:56 AM 9.0609 7:19:29 AM 0.5919 April 22, 2023 8:28:56 AM 9.0493 8:19:29 AM 0.581 April 2					
April 21, 2023 8:28:56 PM 9.1113 8:19:29 PM 0.6046 April 21, 2023 9:28:56 PM 9.1099 9:19:29 PM 0.6106 April 21, 2023 10:28:56 PM 9.1118 10:19:29 PM 0.6106 April 21, 2023 11:28:56 PM 9.1118 10:19:29 PM 0.6104 April 22, 2023 12:28:56 AM 9.1012 12:19:29 PM 0.6105 April 22, 2023 12:28:56 AM 9.0941 1:19:29 AM 0.6104 April 22, 2023 12:28:56 AM 9.083 2:19:29 AM 0.6104 April 22, 2023 3:28:56 AM 9.083 2:19:29 AM 0.6104 April 22, 2023 3:28:56 AM 9.0897 3:19:29 AM 0.6104 April 22, 2023 4:28:56 AM 9.0804 4:19:29 AM 0.6007 April 22, 2023 5:28:56 AM 9.0722 5:19:29 AM 0.6958 April 22, 2023 6:28:56 AM 9.0722 5:19:29 AM 0.5958 April 22, 2023 6:28:56 AM 9.0719 6:19:29 AM 0.5919 April 22, 2023 7:28:56 AM 9.0609 7:19:29 AM 0.581 April 22, 2023 8:28:56 AM 9.0346 9:19:29 AM 0.581 April 22, 2023 10:28:56 AM 9.0346 9:19:29 AM 0.581 April 22, 2023 10:28:56 AM 9.0197 10:19:29 AM 0.581 April 22, 2023 11:28:56 AM 9.0197 10:19:29 AM 0.5572 April 22, 2023 12:28:56 PM 8.9922 12:19:29 PM 0.5491 April 22, 2023 12:28:56 PM 8.9922 12:19:29 PM 0.5365 April 22, 2023 1:28:56 PM 8.9952 12:19:29 PM 0.5365 April 22, 2023 3:28:56 PM 8.9591 3:19:29 PM 0.5236 April 22, 2023 3:28:56 PM 8.9591 3:19:29 PM 0.5236 April 22, 2023 4:28:56 PM 8.9591 3:19:29 PM 0.5236					
April 21, 2023 9:28:56 PM 9:1099 9:19:29 PM 0.6106 April 21, 2023 10:28:56 PM 9:1118 10:19:29 PM 0.6144 April 21, 2023 11:28:56 PM 9:1035 11:19:29 PM 0.6105 April 22, 2023 12:28:56 AM 9:0012 12:19:29 AM 0.608 April 22, 2023 12:28:56 AM 9:0941 1:19:29 AM 0.614 April 22, 2023 2:28:56 AM 9:083 2:19:29 AM 0.6007 April 22, 2023 3:28:56 AM 9:0804 4:19:29 AM 0.6014 April 22, 2023 4:28:56 AM 9:0804 4:19:29 AM 0.6065 April 22, 2023 5:28:56 AM 9:0712 5:19:29 AM 0.5919 April 22, 2023 7:28:56 AM 9:0609 7:19:29 AM 0.5812 April 22, 2023 8:28:56 AM 9:0449 8:19:29 AM 0.5812 April 22, 2023 10:28:56 AM 9:0449 8:19:29 AM 0.5814 April 22, 2023 10:28:56 AM 9:0459 9:19:29 AM 0.5814 Ap					
April 21, 2023 10:28:56 PM 9.1118 10:19:29 PM 0.6144 April 21, 2023 11:28:56 PM 9.1035 11:19:29 PM 0.6105 April 22, 2023 12:28:56 AM 9.091 1:19:29 AM 0.608 April 22, 2023 12:28:56 AM 9.0941 1:19:29 AM 0.6014 April 22, 2023 2:28:56 AM 9.093 2:19:29 AM 0.6014 April 22, 2023 3:28:56 AM 9.083 2:19:29 AM 0.6014 April 22, 2023 4:28:56 AM 9.0897 3:19:29 AM 0.6014 April 22, 2023 4:28:56 AM 9.0804 4:19:29 AM 0.6014 April 22, 2023 5:28:56 AM 9.0722 5:19:29 AM 0.5958 April 22, 2023 6:28:56 AM 9.0719 6:19:29 AM 0.5958 April 22, 2023 6:28:56 AM 9.0609 7:19:29 AM 0.5919 April 22, 2023 8:28:56 AM 9.0609 7:19:29 AM 0.5812 April 22, 2023 8:28:56 AM 9.0493 8:19:29 AM 0.5812 April 22, 2023 10:28:56 AM 9.0197 10:19:29 AM 0.5812 April 22, 2023 10:28:56 AM 9.0197 10:19:29 AM 0.5743 April 22, 2023 11:28:56 PM 8.9027 11:19:29 PM 0.5365 April 22, 2023 1:28:56 PM 8.9732 11:19:29 PM 0.5365 April 22, 2023 2:28:56 PM 8.9617 2:19:29 PM 0.5365 April 22, 2023 3:28:56 PM 8.9517 2:19:29 PM 0.5254 April 22, 2023 4:28:56 PM 8.9591 3:19:29 PM 0.5236					
April 21, 2023 11:28:56 PM 9.1035 11:19:29 PM 0.6105 April 22, 2023 12:28:56 AM 9.1012 12:19:29 AM 0.608 April 22, 2023 1:28:56 AM 9.0941 1:19:29 AM 0.614 April 22, 2023 3:28:56 AM 9.083 2:19:29 AM 0.6007 April 22, 2023 3:28:56 AM 9.0897 3:19:29 AM 0.6014 April 22, 2023 4:28:56 AM 9.0804 4:19:29 AM 0.6065 April 22, 2023 5:28:56 AM 9.0722 5:19:29 AM 0.5958 April 22, 2023 6:28:56 AM 9.0719 6:19:29 AM 0.5919 April 22, 2023 7:28:56 AM 9.0609 7:19:29 AM 0.5812 April 22, 2023 8:28:56 AM 9.0493 8:19:29 AM 0.581 April 22, 2023 10:28:56 AM 9.0493 8:19:29 AM 0.581 April 22, 2023 10:28:56 AM 9.0197 10:19:29 AM 0.557 April 22, 2023 11:28:56 AM 9.0197 10:19:29 AM 0.557 April					
April 22, 2023 12:28:56 AM 9.1012 12:19:29 AM 0.608 April 22, 2023 1:28:56 AM 9.0941 1:19:29 AM 0.614 April 22, 2023 2:28:56 AM 9.083 2:19:29 AM 0.6007 April 22, 2023 3:28:56 AM 9.0997 3:19:29 AM 0.6014 April 22, 2023 4:28:56 AM 9.0804 4:19:29 AM 0.6065 April 22, 2023 5:28:56 AM 9.0722 5:19:29 AM 0.5958 April 22, 2023 6:28:56 AM 9.0719 6:19:29 AM 0.5919 April 22, 2023 7:28:56 AM 9.0609 7:19:29 AM 0.5812 April 22, 2023 8:28:56 AM 9.0493 8:19:29 AM 0.581 April 22, 2023 10:28:56 AM 9.0346 9:19:29 AM 0.574 April 22, 2023 10:28:56 AM 9.0197 10:19:29 AM 0.567 April 22, 2023 11:28:56 AM 9.0075 11:19:29 AM 0.567 April 22, 2023 12:28:56 PM 8.9922 12:19:29 PM 0.5491 April					
April 22, 2023 1:28:56 AM 9.0941 1:19:29 AM 0.614 April 22, 2023 2:28:56 AM 9.083 2:19:29 AM 0.6007 April 22, 2023 3:28:56 AM 9.0997 3:19:29 AM 0.6114 April 22, 2023 4:28:56 AM 9.0804 4:19:29 AM 0.6065 April 22, 2023 6:28:56 AM 9.0712 5:19:29 AM 0.5919 April 22, 2023 7:28:56 AM 9.0609 7:19:29 AM 0.581 April 22, 2023 8:28:56 AM 9.0493 8:19:29 AM 0.581 April 22, 2023 9:28:56 AM 9.0346 9:19:29 AM 0.581 April 22, 2023 10:28:56 AM 9.0197 10:19:29 AM 0.574 April 22, 2023 10:28:56 AM 9.0197 10:19:29 AM 0.5572 April 22, 2023 11:28:56 AM 9.0075 11:19:29 AM 0.5572 April 22, 2023 12:28:56 PM 8.9922 12:19:29 PM 0.5491 April 22, 2023 12:28:56 PM 8.9932 1:19:29 PM 0.5263 April					
April 22, 2023 2:28:56 AM 9.083 2:19:29 AM 0.6007 April 22, 2023 3:28:56 AM 9.0997 3:19:29 AM 0.6114 April 22, 2023 4:28:56 AM 9.0804 4:19:29 AM 0.6065 April 22, 2023 5:28:56 AM 9.0722 5:19:29 AM 0.5919 April 22, 2023 7:28:56 AM 9.0609 7:19:29 AM 0.5812 April 22, 2023 8:28:56 AM 9.0493 8:19:29 AM 0.581 April 22, 2023 9:28:56 AM 9.0346 9:19:29 AM 0.5743 April 22, 2023 10:28:56 AM 9.0197 10:19:29 AM 0.5672 April 22, 2023 11:28:56 AM 9.075 11:19:29 AM 0.5572 April 22, 2023 12:28:56 PM 8.9922 12:19:29 PM 0.5491 April 22, 2023 12:28:56 PM 8.9732 1:19:29 PM 0.5365 April 22, 2023 12:28:56 PM 8.9617 2:19:29 PM 0.5253 April 22, 2023 3:28:56 PM 8.9617 2:19:29 PM 0.5253 Apr					
April 22, 2023 3:28:56 AM 9.0997 3:19:29 AM 0.6114 April 22, 2023 4:28:56 AM 9.0804 4:19:29 AM 0.6065 April 22, 2023 5:28:56 AM 9.0722 5:19:29 AM 0.5958 April 22, 2023 6:28:56 AM 9.0719 6:19:29 AM 0.5919 April 22, 2023 7:28:56 AM 9.0609 7:19:29 AM 0.581 April 22, 2023 8:28:56 AM 9.0493 8:19:29 AM 0.581 April 22, 2023 10:28:56 AM 9.0346 9:19:29 AM 0.5743 April 22, 2023 10:28:56 AM 9.0197 10:19:29 AM 0.5572 April 22, 2023 11:28:56 AM 9.0075 11:19:29 AM 0.5572 April 22, 2023 12:28:56 PM 8.9922 12:19:29 PM 0.5491 April 22, 2023 12:28:56 PM 8.9932 1:19:29 PM 0.5365 April 22, 2023 12:28:56 PM 8.9617 2:19:29 PM 0.5253 April 22, 2023 3:28:56 PM 8.9617 2:19:29 PM 0.5253 A					
April 22, 2023 4:28:56 AM 9.0804 4:19:29 AM 0.6065 April 22, 2023 5:28:56 AM 9.0722 5:19:29 AM 0.5958 April 22, 2023 6:28:56 AM 9.0719 6:19:29 AM 0.5919 April 22, 2023 7:28:56 AM 9.0609 7:19:29 AM 0.5832 April 22, 2023 8:28:56 AM 9.0493 8:19:29 AM 0.583 April 22, 2023 9:28:56 AM 9.0346 9:19:29 AM 0.5743 April 22, 2023 10:28:56 AM 9.0197 10:19:29 AM 0.567 April 22, 2023 11:28:56 AM 9.0075 11:19:29 AM 0.5572 April 22, 2023 12:28:56 PM 8.9922 12:19:29 PM 0.5491 April 22, 2023 1:28:56 PM 8.9732 1:19:29 PM 0.5265 April 22, 2023 2:28:56 PM 8.9617 2:19:29 PM 0.5253 April 22, 2023 3:28:56 PM 8.9591 3:19:29 PM 0.5236					
April 22, 2023 5:28:56 AM 9.0722 5:19:29 AM 0.5958 April 22, 2023 6:28:56 AM 9.0719 6:19:29 AM 0.5919 April 22, 2023 7:28:56 AM 9.0609 7:19:29 AM 0.5832 April 22, 2023 8:28:56 AM 9.0493 8:19:29 AM 0.581 April 22, 2023 9:28:56 AM 9.0346 9:19:29 AM 0.574 April 22, 2023 10:28:56 AM 9.0197 10:19:29 AM 0.567 April 22, 2023 11:28:56 AM 9.0075 11:19:29 AM 0.5572 April 22, 2023 12:28:56 PM 8.9922 12:19:29 PM 0.5491 April 22, 2023 1:28:56 PM 8.9732 1:19:29 PM 0.5365 April 22, 2023 2:28:56 PM 8.9617 2:19:29 PM 0.5253 April 22, 2023 3:28:56 PM 8.9591 3:19:29 PM 0.524 April 22, 2023 4:28:56 PM 8.9581 3:19:29 PM 0.524					
April 22, 2023 6:28:56 AM 9.0719 6:19:29 AM 0.5919 April 22, 2023 7:28:56 AM 9.0609 7:19:29 AM 0.5832 April 22, 2023 8:28:56 AM 9.0493 8:19:29 AM 0.581 April 22, 2023 9:28:56 AM 9.0346 9:19:29 AM 0.5743 April 22, 2023 10:28:56 AM 9.0197 10:19:29 AM 0.5572 April 22, 2023 11:28:56 AM 9.0075 11:19:29 AM 0.5572 April 22, 2023 12:28:56 PM 8.9922 12:19:29 PM 0.5491 April 22, 2023 1:28:56 PM 8.9732 1:19:29 PM 0.5365 April 22, 2023 2:28:56 PM 8.9617 2:19:29 PM 0.524 April 22, 2023 3:28:56 PM 8.9591 3:19:29 PM 0.524 April 22, 2023 4:28:56 PM 8.9595 3:19:29 PM 0.524					
April 22, 2023 7:28:56 AM 9.0609 7:19:29 AM 0.5832 April 22, 2023 8:28:56 AM 9.0493 8:19:29 AM 0.581 April 22, 2023 9:28:56 AM 9.0346 9:19:29 AM 0.5743 April 22, 2023 10:28:56 AM 9.0197 10:19:29 AM 0.5672 April 22, 2023 11:28:56 AM 9.0075 11:19:29 AM 0.5572 April 22, 2023 12:28:56 PM 8.9922 12:19:29 PM 0.5491 April 22, 2023 12:28:56 PM 8.9732 1:19:29 PM 0.5365 April 22, 2023 2:28:56 PM 8.9617 2:19:29 PM 0.5253 April 22, 2023 3:28:56 PM 8.9591 3:19:29 PM 0.5236 April 22, 2023 4:28:56 PM 8.9591 3:19:29 PM 0.5236					
April 22, 2023 8:28:56 AM 9.0493 8:19:29 AM 0.581 April 22, 2023 9:28:56 AM 9.0346 9:19:29 AM 0.5743 April 22, 2023 10:28:56 AM 9.0197 10:19:29 AM 0.567 April 22, 2023 11:28:56 AM 9.0075 11:19:29 AM 0.5572 April 22, 2023 12:28:56 PM 8.9922 12:19:29 PM 0.5491 April 22, 2023 1:28:56 PM 8.9617 2:19:29 PM 0.5253 April 22, 2023 3:28:56 PM 8.9591 3:19:29 PM 0.524 April 22, 2023 4:28:56 PM 8.9568 4:19:29 PM 0.524					
April 22, 2023 9:28:56 AM 9.0346 9:19:29 AM 0.5743 April 22, 2023 10:28:56 AM 9.0197 10:19:29 AM 0.567 April 22, 2023 11:28:56 AM 9.0075 11:19:29 AM 0.5572 April 22, 2023 12:28:56 PM 8.9922 12:19:29 PM 0.5491 April 22, 2023 1:28:56 PM 8.9732 1:19:29 PM 0.5263 April 22, 2023 2:28:56 PM 8.9617 2:19:29 PM 0.524 April 22, 2023 3:28:56 PM 8.9591 3:19:29 PM 0.524 April 22, 2023 4:28:56 PM 8.9568 4:19:29 PM 0.524					
April 22, 2023 10:28:56 AM 9.0197 10:19:29 AM 0.567 April 22, 2023 11:28:56 AM 9.0075 11:19:29 AM 0.5572 April 22, 2023 12:28:56 PM 8.9922 12:19:29 PM 0.5491 April 22, 2023 1:28:56 PM 8.9732 1:19:29 PM 0.5365 April 22, 2023 2:28:56 PM 8.9617 2:19:29 PM 0.5243 April 22, 2023 3:28:56 PM 8.9591 3:19:29 PM 0.524 April 22, 2023 4:28:56 PM 8.9568 4:19:29 PM 0.5236					
April 22, 2023 11:28:56 AM 9.0075 11:19:29 AM 0.5572 April 22, 2023 12:28:56 PM 8.9922 12:19:29 PM 0.5491 April 22, 2023 1:28:56 PM 8.9732 1:19:29 PM 0.5365 April 22, 2023 2:28:56 PM 8.9617 2:19:29 PM 0.5253 April 22, 2023 3:28:56 PM 8.9591 3:19:29 PM 0.5236 April 22, 2023 4:28:56 PM 8.9568 4:19:29 PM 0.5236					
April 22, 2023 12:28:56 PM 8.9922 12:19:29 PM 0.5491 April 22, 2023 1:28:56 PM 8.9732 1:19:29 PM 0.5365 April 22, 2023 2:28:56 PM 8.9617 2:19:29 PM 0.5253 April 22, 2023 3:28:56 PM 8.9591 3:19:29 PM 0.524 April 22, 2023 4:28:56 PM 8.9568 4:19:29 PM 0.5236					
April 22, 2023 1:28:56 PM 8.9732 1:19:29 PM 0.5365 April 22, 2023 2:28:56 PM 8.9617 2:19:29 PM 0.5253 April 22, 2023 3:28:56 PM 8.9591 3:19:29 PM 0.524 April 22, 2023 4:28:56 PM 8.9568 4:19:29 PM 0.5236					
April 22, 2023 2:28:56 PM 8.9617 2:19:29 PM 0.5253 April 22, 2023 3:28:56 PM 8.9591 3:19:29 PM 0.524 April 22, 2023 4:28:56 PM 8.9568 4:19:29 PM 0.5236					
April 22, 2023 3:28:56 PM 8.9591 3:19:29 PM 0.524 April 22, 2023 4:28:56 PM 8.9568 4:19:29 PM 0.5236					
April 22, 2023 4:28:56 PM 8.9568 4:19:29 PM 0.5236					
MPTH 22, 2023 3.26.30 PN 8.9559 5:19:29 PN 0.5244					
	April 22, 2023	5:28:56 PM	6.9559	2:13:53 JM	0.5244

8.66 static WL @ TW5

April 22, 2023	6:28:56 PM	8.9712	6:19:29 PM	0.5397	8.4244
April 22, 2023	7:28:56 PM	8.9746	7:19:29 PM	0.5502	8.4265
April 22, 2023	8:28:56 PM	8.9872	8:19:29 PM	0.5607	8.4276
April 22, 2023	9:28:56 PM	8.9991	9:19:29 PM	0.5715	8.4229
April 22, 2023	10:28:56 PM	9.0014	10:19:29 PM	0.5785	8.423
April 22, 2023	11:28:56 PM		11:19:29 PM		8.4179
		9.0011		0.5781	
April 23, 2023	12:28:56 AM	9.0049	12:19:29 AM	0.587	8.4122
April 23, 2023	1:28:56 AM	9.006	1:19:29 AM	0.5938	8.4114
April 23, 2023	2:28:56 AM	9.0051	2:19:29 AM	0.5937	8.4115
April 23, 2023	3:28:56 AM	9.0083	3:19:29 AM	0.5968	8.409
April 23, 2023	4:28:56 AM	9.0035	4:19:29 AM	0.5945	8.4059
April 23, 2023	5:28:56 AM	9.0099	5:19:29 AM	0.604	8.4077
April 23, 2023	6:28:56 AM	9.0094	6:19:29 AM	0.6017	8.403
April 23, 2023	7:28:56 AM	9.0131	7:19:29 AM	0.6101	8.3948
April 23, 2023	8:28:56 AM	9.009	8:19:29 AM	0.6142	8.3927
April 23, 2023	9:28:56 AM	9.0095	9:19:29 AM	0.6168	8.3869
April 23, 2023	10:28:56 AM	9.0053	10:19:29 AM	0.6184	8.3804
April 23, 2023	11:28:56 AM	9	11:19:29 AM	0.6196	8.3735
April 23, 2023	12:28:56 PM	8.9902	12:19:29 PM	0.6167	8.3692
April 23, 2023	1:28:56 PM	8.9856	1:19:29 PM	0.6164	8.365
April 23, 2023	2:28:56 PM	8.9817	2:19:29 PM	0.6167	8.3618
April 23, 2023	3:28:56 PM	8.9796	3:19:29 PM	0.6178	8.3603
April 23, 2023	4:28:56 PM	8.9778	4:19:29 PM	0.6175	8.3609
April 23, 2023	5:28:56 PM	8.9789	5:19:29 PM	0.618	8.359
April 23, 2023	6:28:56 PM	8.9823	6:19:29 PM	0.6233	8.3547
April 23, 2023	7:28:56 PM	8.9789	7:19:29 PM	0.6242	8.3535
April 23, 2023	8:28:56 PM	8.9838	8:19:29 PM	0.6303	8.3509
April 23, 2023	9:28:56 PM	8.9875	9:19:29 PM	0.6366	8.3497
April 23, 2023	10:28:56 PM	8.9862	10:19:29 PM	0.6365	8.35
April 23, 2023	11:28:56 PM	8.9855	11:19:29 PM	0.6355	8.3489
April 24, 2023	12:28:56 AM	8.9834	12:19:29 AM	0.6345	8.3471
			1:19:29 AM		
April 24, 2023	1:28:56 AM	8.9828		0.6357	8.3433
April 24, 2023	2:28:56 AM	8.977	2:19:29 AM	0.6337	8.3423
April 24, 2023	3:28:56 AM	8.9772	3:19:29 AM	0.6349	8.3411
April 24, 2023	4:28:56 AM	8.9761	4:19:29 AM	0.635	8.3359
April 24, 2023	5:28:56 AM	8.9752	5:19:29 AM	0.6393	8.3366
April 24, 2023	6:28:56 AM	8.9781	6:19:29 AM	0.6415	8.3349
April 24, 2023	7:28:56 AM	8.9814	7:19:29 AM	0.6465	8.3301
April 24, 2023	8:28:56 AM	8.9821	8:19:29 AM	0.652	8.3265
April 24, 2023	9:28:56 AM	8.9805	9:19:29 AM	0.654	8.3225
April 24, 2023	10:28:56 AM	8.9795	10:19:29 AM	0.657	8.3186
April 24, 2023	11:28:56 AM	8.9782	11:19:29 AM	0.6596	8.3129
April 24, 2023	12:28:56 PM	8.9743	12:19:29 PM	0.6614	8.3087
April 24, 2023	1:28:56 PM	8.9655	1:19:29 PM	0.6568	8.3081
April 24, 2023	2:28:56 PM	8.9606	2:19:29 PM	0.6525	8.3038
April 24, 2023	3:28:56 PM	8.9593	3:19:29 PM	0.6555	8.3015
April 24, 2023	4:28:56 PM	8.9572	4:19:29 PM	0.6557	8.3015
April 24, 2023	5:28:56 PM	8.9607	5:19:29 PM	0.6592	8.2999
April 24, 2023	6:28:56 PM	8.9654	6:19:29 PM	0.6655	8.2993
April 24, 2023		8.9682	7:19:29 PM		8.299
	7:28:56 PM			0.6689	
April 24, 2023	8:28:56 PM	8.9707	8:19:29 PM	0.6717	8.2958
April 24, 2023	9:28:56 PM	8.9695	9:19:29 PM	0.6737	8.2968
April 24, 2023	10:28:56 PM	8.9706	10:19:29 PM	0.6738	8.2965
April 24, 2023	11:28:56 PM	8.9708	11:19:29 PM	0.6743	8.2971
April 25, 2023	12:28:56 AM	8.9716	12:19:29 AM	0.6745	8.2951
April 25, 2023	1:28:56 AM	8.9721	1:19:29 AM	0.677	8.2928
April 25, 2023	2:28:56 AM	8.9716	2:19:29 AM	0.6788	8.2927
April 25, 2023	3:28:56 AM	8.969	3:19:29 AM	0.6763	8.2887
April 25, 2023	4:28:56 AM	8.9696	4:19:29 AM	0.6809	8.2847
April 25, 2023		8.9675	5:19:29 AM		8.2808
April 25, 2023 April 25, 2023	5:28:56 AM 6:28:56 AM		6:19:29 AM	0.6828	
		8.9671		0.6863	8.281
April 25, 2023	7:28:56 AM	8.9732	7:19:29 AM	0.6922	8.2761
April 25, 2023	8:28:56 AM	8.9728	8:19:29 AM	0.6967	8.2724
April 25, 2023	9:28:56 AM	8.9696	9:19:29 AM	0.6972	8.2695
April 25, 2023	10:28:56 AM	8.967	10:19:29 AM	0.6975	8.266
April 25, 2023	11:28:56 AM	8.9645	11:19:29 AM	0.6985	8.2627
April 25, 2023	12:28:56 PM	8.9638	12:19:29 PM	0.7011	8.2572
April 25, 2023	1:28:56 PM	8.9562	1:19:29 PM	0.699	8.2536
April 25, 2023	2:28:56 PM	8.9511	2:19:29 PM	0.6975	8.2527
April 25, 2023	3:28:56 PM	8.9491	3:19:29 PM	0.6964	8.25
	4:28:56 PM		4:19:29 PM		8.2449
April 25, 2023		8.9496		0.6996	
April 25, 2023	5:28:56 PM	8.9454	5:19:29 PM	0.7005	8.2397
April 25, 2023	6:28:56 PM	8.9489	6:19:29 PM	0.7092	8.2421
April 25, 2023	7:28:56 PM	8.9464	7:19:29 PM	0.7043	8.2433
April 25, 2023	8:28:56 PM	8.95	8:19:29 PM	0.7067	8.241
April 25, 2023	9:28:56 PM	8.9508	9:19:29 PM	0.7098	8.241
April 25, 2023	10:28:56 PM	8.9517	10:19:29 PM	0.7107	8.2414
April 25, 2023	11:28:56 PM	8.9517	11:19:29 PM	0.7103	8.2431
April 26, 2023	12:28:56 AM	8.9537	12:19:29 AM	0.7106	8.2405
April 26, 2023	1:28:56 AM	8.9511	1:19:29 AM	0.7106	8.2407
April 26, 2023	2:28:56 AM	8.9489	2:19:29 AM	0.7082	8.2394
April 26, 2023	3:28:56 AM	8.9458	3:19:29 AM	0.7064	8.2368
April 26, 2023	4:28:56 AM	8.9433	4:19:29 AM	0.7065	8.2318
April 26, 2023	5:28:56 AM	8.9421	5:19:29 AM	0.7103	8.2297

April 26, 2023	6:28:56 AM	8.9438	6:19:29 AM	0.7141	8.2278
April 26, 2023	7:28:56 AM	8.9475	7:19:29 AM	0.7197	8.223
April 26, 2023	8:28:56 AM	8.9426	8:19:29 AM	0.7196	8.2225
April 26, 2023	9:28:56 AM	8.9415	9:19:29 AM	0.719	8.2209
April 26, 2023	10:28:56 AM	8.938	10:19:29 AM	0.7171	8.2196
April 26, 2023	11:28:56 AM	8.9353	11:19:29 AM	0.7157	8.2148
April 26, 2023	12:28:56 PM	8.9289	12:19:29 PM	0.7141	8.213
April 26, 2023	1:28:56 PM	8.9248	1:19:29 PM	0.7118	8.2105
April 26, 2023	2:28:56 PM	8.9208	2:19:29 PM	0.7103	8.2061
April 26, 2023	3:28:56 PM	8.9132	3:19:29 PM	0.7071	8.2023
April 26, 2023	4:28:56 PM	8.9062	4:19:29 PM	0.7039	8.2007
April 26, 2023	5:28:56 PM	8.9059	5:19:29 PM	0.7052	8.1979
April 26, 2023	6:28:56 PM	8.9045	6:19:29 PM	0.7066	8.1944
April 26, 2023	7:28:56 PM	8.9057	7:19:29 PM	0.7113	8.194
April 26, 2023	8:28:56 PM	8.9026	8:19:29 PM	0.7086	8.1943
April 26, 2023	9:28:56 PM	8.9064	9:19:29 PM	0.7121	8.1935
April 26, 2023	10:28:56 PM	8.9079	10:19:29 PM	0.7144	8.1949
April 26, 2023	11:28:56 PM	8.9083	11:19:29 PM	0.7134	8.1959
April 27, 2023	12:28:56 AM	8.9094	12:19:29 AM	0.7135	8.1967
April 27, 2023	1:28:56 AM	8.9102	1:19:29 AM	0.7135	8.1958
April 27, 2023	2:28:56 AM	8.908	2:19:29 AM	0.7122	8.1923
April 27, 2023	3:28:56 AM	8.9028	3:19:29 AM	0.7105	8.1962
April 27, 2023	4:28:56 AM	8.9065	4:19:29 AM	0.7103	8.1904
April 27, 2023	5:28:56 AM	8.9065	5:19:29 AM	0.7161	8.1838
April 27, 2023	6:28:56 AM	8.9059	6:19:29 AM	0.7221	8.1835
April 27, 2023	7:28:56 AM	8.9084	7:19:29 AM	0.7249	8.181
April 27, 2023	8:28:56 AM	8.9098	8:19:29 AM	0.7288	8.1758
April 27, 2023	9:28:56 AM	8.9063	9:19:29 AM	0.7305	8.1749
April 27, 2023	10:28:56 AM	8.903	10:19:29 AM	0.7303	8.1727
April 27, 2023	11:28:56 AM	8.9	11:19:29 AM	0.7231	8.1688
April 27, 2023			12:19:29 PM		
April 27, 2023 April 27, 2023	12:28:56 PM 1:28:56 PM	8.889 8.8866	1:19:29 PM 1:19:29 PM	0.7202 0.7197	8.1669
					8.1637
April 27, 2023	2:28:56 PM	8.8808	2:19:29 PM	0.7171	8.1551
April 27, 2023	3:28:56 PM	8.8677	3:19:29 PM	0.7126	8.148
April 27, 2023	4:28:56 PM	8.8572	4:19:29 PM	0.7092	8.1429
April 27, 2023	5:28:56 PM	8.8489	5:19:29 PM	0.706	8.1464
April 27, 2023	6:28:56 PM	8.8528	6:19:29 PM	0.7064	8.1467
April 27, 2023	7:28:56 PM	8.8532	7:19:29 PM	0.7065	8.1445
April 27, 2023	8:28:56 PM	8.8505	8:19:29 PM	0.706	8.1454
April 27, 2023	9:28:56 PM	8.8487	9:19:29 PM	0.7033	8.1475
April 27, 2023	10:28:56 PM	8.8512	10:19:29 PM	0.7037	8.1481
April 27, 2023	11:28:56 PM	8.8504	11:19:29 PM	0.7023	8.1519
April 28, 2023	12:28:56 AM	8.8542	12:19:29 AM	0.7023	8.15
April 28, 2023	1:28:56 AM	8.8531	1:19:29 AM	0.7031	8.1524
April 28, 2023	2:28:56 AM	8.8503	2:19:29 AM	0.6979	8.1511
April 28, 2023	3:28:56 AM	8.8475	3:19:29 AM	0.6964	8.1505
April 28, 2023	4:28:56 AM	8.8458	4:19:29 AM	0.6953	8.1468
April 28, 2023	5:28:56 AM	8.8398	5:19:29 AM	0.693	8.1432
April 28, 2023	6:28:56 AM	8.8399	6:19:29 AM	0.6967	8.1432
April 28, 2023	7:28:56 AM	8.8431	7:19:29 AM	0.6999	8.1344
April 28, 2023	8:28:56 AM	8.8365	8:19:29 AM	0.7021	8.1348
April 28, 2023	9:28:56 AM	8.8326	9:19:29 AM	0.6978	8.1328
April 28, 2023	10:28:56 AM	8.8267	10:19:29 AM	0.6939	8.1303
April 28, 2023	11:28:56 AM	8.8215	11:19:29 AM	0.6912	8.1283
April 28, 2023	12:28:56 PM	8.8122	12:19:29 PM	0.6839	8.1251
April 28, 2023	1:28:56 PM	8.8015	1:19:29 PM	0.6764	8.1239
April 28, 2023	2:28:56 PM	8.7954	2:19:29 PM	0.6715	8.1211
April 28, 2023	3:28:56 PM	8.7864	3:19:29 PM	0.6653	8.1197
April 28, 2023	4:28:56 PM	8.7786	4:19:29 PM	0.6589	8.1197
April 28, 2023	5:28:56 PM	8.7759	5:19:29 PM	0.6562	8.1155
April 28, 2023	6:28:56 PM	8.7713	6:19:29 PM	0.6558	8.1144
April 28, 2023	7:28:56 PM	8.7692	7:19:29 PM	0.6548	8.1098
April 28, 2023	8:28:56 PM	8.7652	8:19:29 PM	0.6554	8.1094
April 28, 2023	9:28:56 PM	8.7639	9:19:29 PM	0.6545	8.1089
April 28, 2023	10:28:56 PM	8.7634	10:19:29 PM	0.6545	8.1093
April 28, 2023	11:28:56 PM	8.7614	11:19:29 PM	0.6521	8.1112
April 29, 2023	12:28:56 AM	8.7606	12:19:29 AM	0.6494	8.1119
April 29, 2023	1:28:56 AM	8.7601	1:19:29 AM	0.6482	8.1095
April 29, 2023	2:28:56 AM	8.7532	2:19:29 AM	0.6437	8.1107
April 29, 2023	3:28:56 AM	8.7477	3:19:29 AM	0.637	8.1078
April 29, 2023	4:28:56 AM	8.7435	4:19:29 AM	0.6357	8.1098
April 29, 2023	5:28:56 AM	8.7363	5:19:29 AM	0.6265	8.1092
April 29, 2023	6:28:56 AM	8.7341	6:19:29 AM	0.6249	8.1051
April 29, 2023	7:28:56 AM	8.7304	7:19:29 AM	0.6253	8.1023
April 29, 2023	8:28:56 AM	8.7273	8:19:29 AM	0.625	8.0965
April 29, 2023	9:28:56 AM	8.7209	9:19:29 AM	0.6244	8.0926
April 29, 2023	10:28:56 AM	8.7169	10:19:29 AM	0.6243	8.0934
April 29, 2023	11:28:56 AM	8.7117	11:19:29 AM	0.6183	8.0914
April 29, 2023	12:28:56 PM	8.706	12:19:29 PM	0.6146	8.0949
April 29, 2023	1:28:56 PM	8.7041	1:19:29 PM	0.6092	8.0938
April 29, 2023	2:28:56 PM	8.6983	2:19:29 PM	0.6045	8.0939
April 29, 2023	3:28:56 PM	8.6911	3:19:29 PM	0.5972	8.0935
April 29, 2023	4:28:56 PM	8.6816	4:19:29 PM	0.5881	8.092
April 29, 2023	5:28:56 PM	8.6767	5:19:29 PM	0.5847	8.0899

April 29, 2023	6:28:56 PM	8.6746	6:19:29 PM	0.5847	8.0848
April 29, 2023	7:28:56 PM	8.668	7:19:29 PM	0.5832	8.0841
April 29, 2023	8:28:56 PM	8.6691	8:19:29 PM	0.585	8.0831
April 29, 2023	9:28:56 PM	8.6642	9:19:29 PM	0.5811	8.0829
April 29, 2023	10:28:56 PM	8.6584	10:19:29 PM	0.5755	8.0843
April 29, 2023	11:28:56 PM	8.6548	11:19:29 PM	0.5705	8.0828
April 30, 2023	12:28:56 AM	8.6471	12:19:29 AM	0.5643	8.0853
April 30, 2023	1:28:56 AM	8.6422	1:19:29 AM	0.5569	8.0898
April 30, 2023	2:28:56 AM	8.6379	2:19:29 AM	0.5481	8.0914
April 30, 2023	3:28:56 AM	8.6347	3:19:29 AM	0.5433	8.0903
April 30, 2023	4:28:56 AM	8.6299	4:19:29 AM	0.5396	8.0913
April 30, 2023	5:28:56 AM	8.625	5:19:29 AM	0.5337	8.0906
April 30, 2023	6:28:56 AM	8.6256	6:19:29 AM	0.535	8.0888
April 30, 2023	7:28:56 AM	8.6192	7:19:29 AM	0.5304	8.0852
April 30, 2023	8:28:56 AM	8.6122	8:19:29 AM	0.527	8.0799
April 30, 2023	9:28:56 AM	8.6067	9:19:29 AM	0.5268	8.0769
April 30, 2023	10:28:56 AM	8.5938	10:19:29 AM	0.5169	8.0774
April 30, 2023	11:28:56 AM	8.5862	11:19:29 AM	0.5088	8.0764
April 30, 2023	12:28:56 PM	8.5809	12:19:29 PM	0.5045	8.0758
April 30, 2023	1:28:56 PM	8.5718	1:19:29 PM	0.496	8.0791
April 30, 2023	2:28:56 PM	8.5651	2:19:29 PM	0.486	8.0788
April 30, 2023	3:28:56 PM	8.559	3:19:29 PM	0.4802	8.0785
April 30, 2023	4:28:56 PM	8.5466	4:19:29 PM	0.4681	8.0801
April 30, 2023	5:28:56 PM	8.545	5:19:29 PM	0.4649	8.0771
April 30, 2023	6:28:56 PM	8.5308	6:19:29 PM	0.4537	8.0807
April 30, 2023		8.5148		0.4341	
	7:28:56 PM		7:19:29 PM		8.0935
April 30, 2023	8:28:56 PM	8.5087	8:19:29 PM	0.4152	8.1132
April 30, 2023	9:28:56 PM	8.5393	9:19:29 PM	0.4261	8.1355
April 30, 2023	10:28:56 PM	8.541	10:19:29 PM	0.4055	8.1687
April 30, 2023	11:28:56 PM	8.5565	11:19:29 PM	0.3878	8.2032
May 1, 2023	12:28:56 AM	8.5769	12:19:29 AM	0.3737	8.2367
May 1, 2023	1:28:56 AM	8.5957	1:19:29 AM	0.359	8.2715
May 1, 2023	2:28:56 AM	8.6189	2:19:29 AM	0.3474	8.3067
May 1, 2023	3:28:56 AM	8.6382	3:19:29 AM	0.3315	8.341
	4:28:56 AM	8.6628	4:19:29 AM	0.3218	8.3723
May 1, 2023					
May 1, 2023	5:28:56 AM	8.6806	5:19:29 AM	0.3083	8.4071
May 1, 2023	6:28:56 AM	8.7105	6:19:29 AM	0.3034	8.4416
May 1, 2023	7:28:56 AM	8.7412	7:19:29 AM	0.2996	8.4718
May 1, 2023	8:28:56 AM	8.7775	8:19:29 AM	0.3057	8.5038
May 1, 2023	9:28:56 AM	8.8159	9:19:29 AM	0.3121	8.5324
May 1, 2023	10:28:56 AM	8.8567	10:19:29 AM	0.3243	8.5621
May 1, 2023	11:28:56 AM	8.8982	11:19:29 AM	0.3361	8.589
May 1, 2023	12:28:56 PM	8.9385	12:19:29 PM	0.3495	8.6173
May 1, 2023	1:28:56 PM	8.9688	1:19:29 PM	0.3515	8.6465
May 1, 2023	2:28:56 PM	9.0012	2:19:29 PM	0.3547	8.6746
May 1, 2023	3:28:56 PM	9.0327	3:19:29 PM	0.3581	8.7004
May 1, 2023	4:28:56 PM	9.0645	4:19:29 PM	0.3641	8.7254
May 1, 2023		9.0991		0.3737	
May 1, 2023	5:28:56 PM 6:28:56 PM	9.1288	5:19:29 PM 6:19:29 PM	0.3821	8.7467 8.7644
May 1, 2023	7:28:56 PM	9.1555	7:19:29 PM	0.3911	8.7852
May 1, 2023	8:28:56 PM	9.1847	8:19:29 PM	0.3995	8.8024
May 1, 2023	9:28:56 PM	9.2091	9:19:29 PM	0.4067	8.8185
May 1, 2023	10:28:56 PM	9.2274	10:19:29 PM	0.4089	8.8379
May 1, 2023	11:28:56 PM	9.2474	11:19:29 PM	0.4095	8.8577
May 2, 2023	12:28:56 AM	9.2677	12:19:29 AM	0.41	8.8766
May 2, 2023	1:28:56 AM	9.2857	1:19:29 AM	0.4091	8.894
May 2, 2023	2:28:56 AM	9.2992	2:19:29 AM	0.4052	8.91
May 2, 2023	3:28:56 AM	9.3171	3:19:29 AM	0.4071	8.9249
May 2, 2023	4:28:56 AM	9.3339	4:19:29 AM	0.409	8.9346
					8.9465
May 2, 2023	5:28:56 AM	9.3469	5:19:29 AM	0.4123	
May 2, 2023	6:28:56 AM	9.3611	6:19:29 AM	0.4146	8.9583
May 2, 2023	7:28:56 AM	9.3762	7:19:29 AM	0.4179	8.9671
May 2, 2023	8:28:56 AM	9.3875	8:19:29 AM	0.4204	8.9742
May 2, 2023	9:28:56 AM	9.3961	9:19:29 AM	0.4219	8.9835
May 2, 2023	10:28:56 AM	9.4063	10:19:29 AM	0.4228	8.9896
May 2, 2023	11:28:56 AM	9.4144	11:19:29 AM	0.4248	9.0033
May 2, 2023	12:28:56 PM	9.4296	12:19:29 PM	0.4263	9.0151
May 2, 2023	1:28:56 PM	9.4449	1:19:29 PM	0.4298	9.0268
May 2, 2023	2:28:56 PM	9.4571	2:19:29 PM	0.4303	9.0379
May 2, 2023	3:28:56 PM	9.4671	3:19:29 PM	0.4303	9.0484
		9.482	4:19:29 PM		
May 2, 2023	4:28:56 PM			0.4336	9.0569
May 2, 2023	5:28:56 PM	9.4915	5:19:29 PM	0.4346	9.062
May 2, 2023	6:28:56 PM	9.5038	6:19:29 PM	0.4418	9.069
May 2, 2023	7:28:56 PM	9.5173	7:19:29 PM	0.4483	9.0725
May 2, 2023	8:28:56 PM	9.5275	8:19:29 PM	0.455	9.0779
May 2, 2023	9:28:56 PM	9.5404	9:19:29 PM	0.4625	9.083
May 2, 2023	10:28:56 PM	9.5488	10:19:29 PM	0.4658	9.0905
May 2, 2023	11:28:56 PM	9.554	11:19:29 PM	0.4635	9.0998
May 3, 2023	12:28:56 AM	9.561	12:19:29 AM	0.4612	9.1057
May 3, 2023	1:28:56 AM	9.568	1:19:29 AM	0.4623	9.1132
	2:28:56 AM		2:19:29 AM		
May 3, 2023		9.5737		0.4605	9.1207
May 3, 2023	3:28:56 AM	9.5778	3:19:29 AM	0.4571	9.1301
May 3, 2023	4:28:56 AM	9.5857	4:19:29 AM	0.4556	9.1347
May 3, 2023	5:28:56 AM	9.5917	5:19:29 AM	0.457	9.1378

May 3, 2023	6:28:56 AM	9.6	6:19:29 AM	0.4622	9.1447
May 3, 2023	7:28:56 AM	9.6121	7:19:29 AM	0.4674	9.1485
May 3, 2023	8:28:56 AM	9.6202	8:19:29 AM	0.4717	9.1497
May 3, 2023	9:28:56 AM	9.627	9:19:29 AM	0.4773	9.1536
May 3, 2023	10:28:56 AM	9.6356	10:19:29 AM	0.482	9.1601
May 3, 2023	11:28:56 AM	9.6497	11:19:29 AM	0.4896	9.1675
May 3, 2023	12:28:56 PM	9.6645	12:19:29 PM	0.497	9.1769
May 3, 2023	1:28:56 PM	9.6775	1:19:29 PM	0.5006	9.1866
May 3, 2023	2:28:56 PM	9.6919	2:19:29 PM	0.5053	9.1957
May 3, 2023	3:28:56 PM	9.7058	3:19:29 PM	0.5101	9.2065
May 3, 2023	4:28:56 PM	9.7232	4:19:29 PM	0.5167	9.2159
May 3, 2023	5:28:56 PM	9.7395	5:19:29 PM	0.5236	9.2217
May 3, 2023	6:28:56 PM	9.7549	6:19:29 PM	0.5332	9.2267
May 3, 2023	7:28:56 PM	9.7688	7:19:29 PM	0.5421	9.2332
May 3, 2023	8:28:56 PM	9.7831	8:19:29 PM	0.5499	9.2364
May 3, 2023	9:28:56 PM	9.793	9:19:29 PM	0.5566	9.2397
May 3, 2023	10:28:56 PM	9.8026	10:19:29 PM	0.5629	9.2454
May 3, 2023	11:28:56 PM	9.8118	11:19:29 PM	0.5664	9.2501
May 4, 2023	12:28:56 AM	9.8203	12:19:29 AM	0.5702	9.2581
May 4, 2023	1:28:56 AM	9.832	1:19:29 AM	0.5739	9.2632
May 4, 2023	2:28:56 AM	9.8409	2:19:29 AM	0.5777	9.2679
May 4, 2023	3:28:56 AM	9.8509	3:19:29 AM	0.583	9.2739
May 4, 2023	4:28:56 AM	9.8622	4:19:29 AM	0.5883	9.2759
May 4, 2023	5:28:56 AM	9.8718	5:19:29 AM	0.5959	9.2767
May 4, 2023	6:28:56 AM	9.8817	6:19:29 AM	0.605	9.2811
May 4, 2023	7:28:56 AM	9.8945	7:19:29 AM	0.6134	9.2797
May 4, 2023		9.9017	8:19:29 AM		
May 4, 2023	8:28:56 AM	9.9017	9:19:29 AM	0.622	9.2788
May 4, 2023	9:28:56 AM 10:28:56 AM	9.9076	9:19:29 AM 10:19:29 AM	0.6288 0.6359	9.2773 9.2779
May 4, 2023					
	11:28:56 AM	9.9199	11:19:29 AM	0.642	9.2769
May 4, 2023	12:28:56 PM	9.9238	12:19:29 PM	0.6469	9.2779
May 4, 2023	1:28:56 PM	9.9282	1:19:29 PM	0.6503	9.2818
May 4, 2023	2:28:56 PM	9.9348	2:19:29 PM	0.653	9.2858
May 4, 2023	3:28:56 PM	9.9431	3:19:29 PM	0.6573	9.2909
May 4, 2023	4:28:56 PM	9.95	4:19:29 PM	0.6591	9.2953
May 4, 2023	5:28:56 PM	9.9607	5:19:29 PM	0.6654	9.2966
May 4, 2023	6:28:56 PM	9.9672	6:19:29 PM	0.6706	9.2988
May 4, 2023	7:28:56 PM	9.9743	7:19:29 PM	0.6755	9.2976
May 4, 2023	8:28:56 PM	9.9796	8:19:29 PM	0.682	9.2965
May 4, 2023	9:28:56 PM	9.9838	9:19:29 PM	0.6873	9.296
May 4, 2023	10:28:56 PM	9.9877	10:19:29 PM	0.6917	9.2964
May 4, 2023	11:28:56 PM	9.9904	11:19:29 PM	0.694	9.2968
May 5, 2023	12:28:56 AM	9.9945	12:19:29 AM	0.6977	9.2982
May 5, 2023	1:28:56 AM	9.9983	1:19:29 AM	0.7001	9.2977
May 5, 2023	2:28:56 AM	10.001	2:19:29 AM	0.7033	9.2989
May 5, 2023	3:28:56 AM	10.0066	3:19:29 AM	0.7077	9.2998
May 5, 2023	4:28:56 AM	10.0101	4:19:29 AM	0.7103	9.3018
May 5, 2023	5:28:56 AM	10.0173	5:19:29 AM	0.7155	9.2981
May 5, 2023	6:28:56 AM	10.0206	6:19:29 AM	0.7225	9.2953
May 5, 2023	7:28:56 AM	10.0267	7:19:29 AM	0.7314	9.2919
May 5, 2023	8:28:56 AM	10.0309	8:19:29 AM	0.739	9.281
May 5, 2023	9:28:56 AM	10.0231	9:19:29 AM	0.7421	9.2805
May 5, 2023	10:28:56 AM	10.026	10:19:29 AM	0.7455	9.2758
May 5, 2023	11:28:56 AM	10.0245	11:19:29 AM	0.7487	9.2724
May 5, 2023	12:28:56 PM	10.0191	12:19:29 PM	0.7467	9.2699
May 5, 2023	1:28:56 PM	10.0155	1:19:29 PM	0.7456	9.2646
May 5, 2023	2:28:56 PM	10.0076	2:19:29 PM	0.743	9.2704
May 5, 2023	3:28:56 PM	10.009	3:19:29 PM	0.7386	9.2748
May 5, 2023	4:28:56 PM	10.01	4:19:29 PM	0.7352	9.2781
May 5, 2023	5:28:56 PM	10.0113	5:19:29 PM	0.7332	9.2787
May 5, 2023	6:28:56 PM	10.0113	6:19:29 PM	0.7326	9.2768
May 5, 2023	7:28:56 PM	10.0108	7:19:29 PM	0.734	9.277
May 5, 2023	8:28:56 PM	10.0133	8:19:29 PM	0.7363	9.2736
May 5, 2023	9:28:56 PM	10.0144	9:19:29 PM	0.7408	9.2708
May 5, 2023	10:28:56 PM	10.0135	10:19:29 PM	0.7427	9.2691
May 5, 2023	11:28:56 PM	10.0112	11:19:29 PM	0.7421	9.2658
May 6, 2023	12:28:56 AM	10.009	12:19:29 AM	0.7432	9.2657
May 6, 2023	1:28:56 AM	10.0073	1:19:29 AM	0.7416	9.2658
May 6, 2023	2:28:56 AM	10.0071	2:19:29 AM	0.7413	9.2653
May 6, 2023	3:28:56 AM	10.0072	3:19:29 AM	0.7419	9.2637
May 6, 2023	4:28:56 AM	10.0082	4:19:29 AM	0.7445	9.2629
May 6, 2023	5:28:56 AM	10.0099	5:19:29 AM	0.747	9.262
May 6, 2023	6:28:56 AM	10.0116	6:19:29 AM	0.7496	9.2567
May 6, 2023	7:28:56 AM	10.0088	7:19:29 AM	0.7521	9.2495
May 6, 2023	8:28:56 AM	10.0031	8:19:29 AM	0.7536	9.2398
May 6, 2023	9:28:56 AM	9.992	9:19:29 AM	0.7522	9.2333
May 6, 2023	10:28:56 AM	9.9809	10:19:29 AM	0.7476	9.2267
May 6, 2023	11:28:56 AM	9.9718	11:19:29 AM	0.7451	9.2216
May 6, 2023	12:28:56 PM	9.9617	12:19:29 PM	0.7401	9.2192
May 6, 2023	1:28:56 PM	9.9539	1:19:29 PM	0.7347	9.2171
May 6, 2023	2:28:56 PM	9.9444	2:19:29 PM	0.7273	9.2163
May 6, 2023	3:28:56 PM	9.9399	3:19:29 PM	0.7236	9.2115
May 6, 2023	4:28:56 PM	9.9279	4:19:29 PM	0.7164	9.2115
May 6, 2023	5:28:56 PM	9.9197	5:19:29 PM	0.7082	9.2158

May 6, 2023	6:28:56 PM	9.92	6:19:29 PM	0.7042	9.2162
May 6, 2023	7:28:56 PM	9.9186	7:19:29 PM	0.7024	9.2149
May 6, 2023	8:28:56 PM	9.9164	8:19:29 PM	0.7015	9.2125
May 6, 2023	9:28:56 PM	9.915	9:19:29 PM	0.7025	9.209
May 6, 2023	10:28:56 PM	9.9077	10:19:29 PM	0.6987	9.2059
May 6, 2023	11:28:56 PM	9.9008	11:19:29 PM	0.6949	9.2019
May 7, 2023	12:28:56 AM	9.8964	12:19:29 AM	0.6945	9.1995
May 7, 2023	1:28:56 AM	9.8902	1:19:29 AM	0.6907	9.1955
May 7, 2023	2:28:56 AM	9.8833	2:19:29 AM	0.6878	9.1962
May 7, 2023	3:28:56 AM	9.8789	3:19:29 AM	0.6827	9.1943
May 7, 2023	4:28:56 AM	9.8729	4:19:29 AM	0.6786	9.1943
May 7, 2023	5:28:56 AM	9.8678	5:19:29 AM	0.6735	9.1915
		9.8625	6:19:29 AM		
May 7, 2023	6:28:56 AM			0.671	9.187
May 7, 2023	7:28:56 AM	9.855	7:19:29 AM	0.668	9.1798
May 7, 2023	8:28:56 AM	9.8437	8:19:29 AM	0.6639	9.1712
May 7, 2023	9:28:56 AM	9.8312	9:19:29 AM	0.66	9.162
May 7, 2023	10:28:56 AM		10:19:29 AM	0.6576	9.1552
		9.8196			
May 7, 2023	11:28:56 AM	9.8039	11:19:29 AM	0.6487	9.1481
May 7, 2023	12:28:56 PM	9.7886	12:19:29 PM	0.6405	9.1425
May 7, 2023	1:28:56 PM	9.7733	1:19:29 PM	0.6308	9.1399
May 7, 2023	2:28:56 PM	9.7623	2:19:29 PM	0.6224	9.1358
May 7, 2023	3:28:56 PM	9.7508	3:19:29 PM	0.615	9.1343
May 7, 2023	4:28:56 PM	9.7411	4:19:29 PM	0.6068	9.1341
May 7, 2023	5:28:56 PM	9.7373	5:19:29 PM	0.6032	9.1329
May 7, 2023	6:28:56 PM	9.7333	6:19:29 PM	0.6004	9.1289
May 7, 2023	7:28:56 PM	9.7269	7:19:29 PM	0.598	9.1291
May 7, 2023	8:28:56 PM	9.7257	8:19:29 PM	0.5966	9.1275
May 7, 2023	9:28:56 PM	9.727	9:19:29 PM	0.5995	9.1229
May 7, 2023	10:28:56 PM	9.7224	10:19:29 PM	0.5995	9.1209
May 7, 2023	11:28:56 PM	9.7164	11:19:29 PM	0.5955	9.1178
May 8, 2023	12:28:56 AM	9.7128	12:19:29 AM	0.595	9.1119
May 8, 2023	1:28:56 AM	9.7072	1:19:29 AM	0.5953	9.1118
May 8, 2023	2:28:56 AM	9.7026	2:19:29 AM	0.5908	9.1068
May 8, 2023	3:28:56 AM	9.7016	3:19:29 AM	0.5948	9.1031
May 8, 2023	4:28:56 AM	9.6983	4:19:29 AM	0.5952	9.1013
May 8, 2023	5:28:56 AM	9.6914	5:19:29 AM	0.5901	9.0942
May 8, 2023	6:28:56 AM	9.702	6:19:29 AM	0.6078	9.0882
May 8, 2023	7:28:56 AM	9.7105	7:19:29 AM	0.6223	9.0772
May 8, 2023	8:28:56 AM	9.6979	8:19:29 AM	0.6207	9.0666
May 8, 2023	9:28:56 AM	9.6876	9:19:29 AM	0.621	9.0634
May 8, 2023	10:28:56 AM	9.6902	10:19:29 AM	0.6268	9.0582
May 8, 2023	11:28:56 AM	9.6855	11:19:29 AM	0.6273	9.0488
May 8, 2023	12:28:56 PM	9.6798	12:19:29 PM	0.631	9.0414
May 8, 2023	1:28:56 PM	9.6686	1:19:29 PM	0.6272	9.0396
May 8, 2023	2:28:56 PM	9.662	2:19:29 PM	0.6224	9.0375
May 8, 2023	3:28:56 PM	9.6562	3:19:29 PM	0.6187	9.0347
	4:28:56 PM	9.6524	4:19:29 PM		
May 8, 2023				0.6177	9.0305
May 8, 2023	5:28:56 PM	9.6505	5:19:29 PM	0.62	9.0306
May 8, 2023	6:28:56 PM	9.6504	6:19:29 PM	0.6198	9.0266
May 8, 2023	7:28:56 PM	9.6486	7:19:29 PM	0.622	9.0272
May 8, 2023	8:28:56 PM	9.6557	8:19:29 PM	0.6285	9.0248
			9:19:29 PM		
May 8, 2023	9:28:56 PM	9.6606		0.6358	9.0209
May 8, 2023	10:28:56 PM	9.6623	10:19:29 PM	0.6414	9.0186
May 8, 2023	11:28:56 PM	9.6642	11:19:29 PM	0.6456	9.0125
May 9, 2023	12:28:56 AM	9.6634	12:19:29 AM	0.6509	9.009
May 9, 2023	1:28:56 AM	9.6611	1:19:29 AM	0.6521	9.0066
May 9, 2023	2:28:56 AM	9.6572	2:19:29 AM	0.6506	9.0026
May 9, 2023	3:28:56 AM	9.6541	3:19:29 AM	0.6515	8.9992
May 9, 2023	4:28:56 AM	9.6544	4:19:29 AM	0.6552	8.9974
May 9, 2023	5:28:56 AM	9.6553	5:19:29 AM	0.6579	8.9906
May 9, 2023	6:28:56 AM		6:19:29 AM	0.6648	
		9.6554			8.9863
May 9, 2023	7:28:56 AM	9.658	7:19:29 AM	0.6717	8.9801
May 9, 2023	8:28:56 AM	9.6572	8:19:29 AM	0.6771	8.9726
May 9, 2023	9:28:56 AM	9.6526	9:19:29 AM	0.68	8.9642
May 9, 2023	10:28:56 AM	9.6434	10:19:29 AM	0.6792	8.9573
May 9, 2023	11:28:56 AM	9.6384	11:19:29 AM	0.6811	8.9519
May 9, 2023	12:28:56 PM	9.6336	12:19:29 PM	0.6817	8.9462
May 9, 2023	1:28:56 PM	9.6271	1:19:29 PM	0.6809	8.9398
May 9, 2023	2:28:56 PM	9.6191	2:19:29 PM	0.6793	8.934
May 9, 2023	3:28:56 PM	9.6086	3:19:29 PM	0.6746	8.9291
May 9, 2023	4:28:56 PM	9.6023	4:19:29 PM	0.6732	8.9271
May 9, 2023	5:28:56 PM	9.5988	5:19:29 PM	0.6717	8.9267
May 9, 2023	6:28:56 PM	9.5982	6:19:29 PM	0.6715	8.9226
May 9, 2023	7:28:56 PM	9.5949	7:19:29 PM	0.6723	8.9193
			8:19:29 PM		8.9173
May 9, 2023	8:28:56 PM	9.5941		0.6748	
May 9, 2023	9:28:56 PM	9.5942	9:19:29 PM	0.6769	8.915
May 9, 2023	10:28:56 PM	9.5929	10:19:29 PM	0.6779	8.9145
May 9, 2023	11:28:56 PM	9.5959	11:19:29 PM	0.6814	8.9105
May 10, 2023	12:28:56 AM	9.5955	12:19:29 AM	0.685	8.9071
May 10, 2023	1:28:56 AM	9.5923	1:19:29 AM	0.6852	8.9053
May 10, 2023	2:28:56 AM	9.5911	2:19:29 AM	0.6858	8.9019
May 10, 2023	3:28:56 AM	9.5883	3:19:29 AM	0.6864	8.8969
May 10, 2023	4:28:56 AM	9.585	4:19:29 AM	0.6881	8.892
				0.6894	
May 10, 2023	5:28:56 AM	9.5814	5:19:29 AM	0.0034	8.8846

May 10, 2023	6:28:56 AM	9.5784	6:19:29 AM	0.6938	8.8819
May 10, 2023	7:28:56 AM	9.5828	7:19:29 AM	0.7009	8.8757
May 10, 2023	8:28:56 AM	9.578	8:19:29 AM	0.7023	8.8714
May 10, 2023	9:28:56 AM	9.5742	9:19:29 AM	0.7028	8.8639
May 10, 2023	10:28:56 AM	9.5641	10:19:29 AM	0.7002	8.8571
May 10, 2023	11:28:56 AM	9.5521	11:19:29 AM	0.695	8.8519
May 10, 2023	12:28:56 PM	9.5377	12:19:29 PM	0.6858	8.843
May 10, 2023	1:28:56 PM	9.5206	1:19:29 PM	0.6776	8.8406
May 10, 2023	2:28:56 PM	9.5093	2:19:29 PM	0.6687	8.8318
May 10, 2023	3:28:56 PM	9.4941	3:19:29 PM	0.6623	8.8304
May 10, 2023	4:28:56 PM	9.4844	4:19:29 PM	0.654	8.8247
May 10, 2023	5:28:56 PM	9.4779	5:19:29 PM	0.6532	8.8199
May 10, 2023	6:28:56 PM	9.4732	6:19:29 PM	0.6533	8.8174
May 10, 2023	7:28:56 PM	9.4688	7:19:29 PM	0.6514	8.8142
May 10, 2023	8:28:56 PM	9.4672	8:19:29 PM	0.653	8.8109
May 10, 2023					
	9:28:56 PM	9.4694	9:19:29 PM	0.6585	8.807
May 10, 2023	10:28:56 PM	9.4695	10:19:29 PM	0.6625	8.8051
May 10, 2023	11:28:56 PM	9.4683	11:19:29 PM	0.6632	8.8046
May 11, 2023	12:28:56 AM	9.4679	12:19:29 AM	0.6633	8.8019
May 11, 2023	1:28:56 AM	9.4649	1:19:29 AM	0.663	8.7985
May 11, 2023	2:28:56 AM	9.4598	2:19:29 AM	0.6613	8.7951
May 11, 2023	3:28:56 AM	9.4564	3:19:29 AM	0.6613	8.7925
May 11, 2023	4:28:56 AM	9.4558	4:19:29 AM	0.6633	8.7866
May 11, 2023	5:28:56 AM	9.4523	5:19:29 AM	0.6657	8.7822
May 11, 2023	6:28:56 AM	9.4544	6:19:29 AM	0.6722	8.7763
May 11, 2023		9.4582			
	7:28:56 AM	9.4582	7:19:29 AM	0.6819	8.7714 8.7675
May 11, 2023	8:28:56 AM		8:19:29 AM	0.6833	8.7675
May 11, 2023	9:28:56 AM	9.4444	9:19:29 AM	0.6769	8.76
May 11, 2023	10:28:56 AM	9.4399	10:19:29 AM	0.6799	8.7539
May 11, 2023	11:28:56 AM	9.4346	11:19:29 AM	0.6807	8.7465
May 11, 2023	12:28:56 PM	9.4225	12:19:29 PM	0.676	8.7411
May 11, 2023	1:28:56 PM	9.4105	1:19:29 PM	0.6694	8.7334
May 11, 2023	2:28:56 PM	9.3955	2:19:29 PM	0.6621	8.7287
May 11, 2023	3:28:56 PM	9.3844	3:19:29 PM	0.6557	8.7223
May 11, 2023	4:28:56 PM	9.3771	4:19:29 PM	0.6548	8.7173
			5:19:29 PM		
May 11, 2023	5:28:56 PM	9.3701		0.6528	8.7107
May 11, 2023	6:28:56 PM	9.3566	6:19:29 PM	0.6459	8.7046
May 11, 2023	7:28:56 PM	9.3488	7:19:29 PM	0.6442	8.7025
May 11, 2023	8:28:56 PM	9.3444	8:19:29 PM	0.6419	8.6985
May 11, 2023	9:28:56 PM	9.3415	9:19:29 PM	0.643	8.6963
May 11, 2023	10:28:56 PM	9.3388	10:19:29 PM	0.6425	8.6961
May 11, 2023	11:28:56 PM	9.3376	11:19:29 PM	0.6415	8.6974
May 12, 2023	12:28:56 AM	9.3367	12:19:29 AM	0.6393	8.6962
May 12, 2023	1:28:56 AM	9.3398	1:19:29 AM	0.6436	8.6906
May 12, 2023	2:28:56 AM	9.3442	2:19:29 AM	0.6536	8.6883
May 12, 2023	3:28:56 AM	9.3322	3:19:29 AM	0.6439	8.6846
May 12, 2023	4:28:56 AM	9.3322	4:19:29 AM	0.6476	8.6794
May 12, 2023	5:28:56 AM	9.3314	5:19:29 AM	0.652	8.6725
May 12, 2023	6:28:56 AM	9.3321	6:19:29 AM	0.6596	8.6672
	7:28:56 AM	9.3337	7:19:29 AM		
May 12, 2023				0.6665	8.6622
May 12, 2023	8:28:56 AM	9.3296	8:19:29 AM	0.6674	8.6566
May 12, 2023	9:28:56 AM	9.3277	9:19:29 AM	0.6711	8.6504
May 12, 2023	10:28:56 AM	9.3231	10:19:29 AM	0.6727	8.6462
May 12, 2023	11:28:56 AM	9.3157	11:19:29 AM	0.6695	8.6422
May 12, 2023	12:28:56 PM	9.3086	12:19:29 PM	0.6664	8.6371
May 12, 2023	1:28:56 PM	9.3004	1:19:29 PM	0.6633	8.6332
May 12, 2023	2:28:56 PM	9.2909	2:19:29 PM	0.6577	8.627
May 12, 2023	3:28:56 PM	9.2804	3:19:29 PM	0.6534	8.6223
May 12, 2023	4:28:56 PM	9.2709	4:19:29 PM	0.6486	8.6175
May 12, 2023	5:28:56 PM	9.2645	5:19:29 PM	0.647	8.6122
May 12, 2023	6:28:56 PM	9.2594	6:19:29 PM	0.6472	8.6059
May 12, 2023	7:28:56 PM	9.2533	7:19:29 PM	0.6474	8.6034
May 12, 2023	8:28:56 PM	9.2526	8:19:29 PM	0.6492	8.5997
May 12, 2023	9:28:56 PM	9.2549	9:19:29 PM	0.6552	8.5938
May 12, 2023	10:28:56 PM	9.2562	10:19:29 PM	0.6624	8.5929
May 12, 2023	11:28:56 PM	9.2566	11:19:29 PM	0.6637	8.5921
May 13, 2023	12:28:56 AM	9.2624	12:19:29 AM	0.6703	8.588
May 13, 2023	1:28:56 AM	9.265	1:19:29 AM	0.677	8.5844
May 13, 2023	2:28:56 AM	9.2683	2:19:29 AM	0.6839	8.5802
May 13, 2023	3:28:56 AM	9.2662	3:19:29 AM	0.686	8.5784
May 13, 2023	4:28:56 AM	9.2701	4:19:29 AM	0.6917	8.5748
May 13, 2023	5:28:56 AM	9.2693	5:19:29 AM	0.6945	8.5687
May 13, 2023	6:28:56 AM	9.2708	6:19:29 AM	0.7021	8.5597
May 13, 2023	7:28:56 AM	9.2667	7:19:29 AM	0.707	8.5525
May 13, 2023	8:28:56 AM	9.257	8:19:29 AM	0.7045	8.546
May 13, 2023	9:28:56 AM	9.2505	9:19:29 AM	0.7045	8.5411
May 13, 2023	10:28:56 AM	9.2422	10:19:29 AM	0.7011	8.5348
May 13, 2023	11:28:56 AM	9.2371	11:19:29 AM	0.7023	8.5308
May 13, 2023	12:28:56 PM	9.2305	12:19:29 PM	0.6997	8.521
May 13, 2023	1:28:56 PM	9.2183	1:19:29 PM	0.6973	8.5138
May 13, 2023	2:28:56 PM	9.2112	2:19:29 PM	0.6974	8.5113
May 13, 2023	3:28:56 PM	9.212	3:19:29 PM	0.7007	8.5084
May 13, 2023	4:28:56 PM	9.209	4:19:29 PM	0.7006	8.502
May 13, 2023	5:28:56 PM	9.207	5:19:29 PM	0.705	8.4984
,		-			

May 13, 2023	6:28:56 PM	9.2077	6:19:29 PM	0.7093	8.4899
May 13, 2023	7:28:56 PM	9.206	7:19:29 PM	0.7161	8.4842
May 13, 2023	8:28:56 PM	9.2068	8:19:29 PM	0.7226	8.4797
May 13, 2023	9:28:56 PM	9.213	9:19:29 PM	0.7333	8.4745
May 13, 2023	10:28:56 PM	9.2174	10:19:29 PM	0.7429	8.4735
May 13, 2023	11:28:56 PM	9.2181	11:19:29 PM	0.7446	8.4724
	12:28:56 AM	9.2199			
May 14, 2023			12:19:29 AM	0.7475	8.4713
May 14, 2023	1:28:56 AM	9.2234	1:19:29 AM	0.7521	8.4728
May 14, 2023	2:28:56 AM	9.2255	2:19:29 AM	0.7527	8.4678
May 14, 2023	3:28:56 AM	9.2269	3:19:29 AM	0.7591	8.4668
May 14, 2023	4:28:56 AM	9.2281	4:19:29 AM	0.7613	8.4624
May 14, 2023	5:28:56 AM	9.2305	5:19:29 AM	0.7681	8.4575
May 14, 2023	6:28:56 AM	9.2322	6:19:29 AM	0.7747	8.4468
May 14, 2023	7:28:56 AM	9.2281	7:19:29 AM	0.7813	8.4371
	8:28:56 AM				
May 14, 2023		9.2201	8:19:29 AM	0.783	8.427
May 14, 2023	9:28:56 AM	9.212	9:19:29 AM	0.785	8.4233
May 14, 2023	10:28:56 AM	9.2057	10:19:29 AM	0.7824	8.4202
May 14, 2023	11:28:56 AM	9.1993	11:19:29 AM	0.7791	8.4178
May 14, 2023	12:28:56 PM	9.1955	12:19:29 PM	0.7777	8.4132
May 14, 2023	1:28:56 PM	9.1853	1:19:29 PM	0.7721	8.4134
May 14, 2023	2:28:56 PM	9.1795	2:19:29 PM	0.7661	8.406
May 14, 2023	3:28:56 PM	9.1714	3:19:29 PM	0.7654	8.405
May 14, 2023	4:28:56 PM	9.165	4:19:29 PM	0.76	8.3941
		9.1508	5:19:29 PM	0.7567	8.3844
May 14, 2023	5:28:56 PM				
May 14, 2023	6:28:56 PM	9.14	6:19:29 PM	0.7556	8.3751
May 14, 2023	7:28:56 PM	9.1318	7:19:29 PM	0.7567	8.3699
May 14, 2023	8:28:56 PM	9.1294	8:19:29 PM	0.7595	8.3682
May 14, 2023	9:28:56 PM	9.1277	9:19:29 PM	0.7595	8.3667
May 14, 2023	10:28:56 PM	9.1292	10:19:29 PM	0.7625	8.3676
May 14, 2023	11:28:56 PM	9.1282	11:19:29 PM	0.7606	8.3683
May 15, 2023	12:28:56 AM	9.1231	12:19:29 AM	0.7548	8.3675
May 15, 2023	1:28:56 AM	9.1199	1:19:29 AM	0.7524	8.3688
May 15, 2023	2:28:56 AM	9.1157	2:19:29 AM	0.7469	8.367
May 15, 2023	3:28:56 AM	9.1105	3:19:29 AM	0.7435	8.3672
May 15, 2023	4:28:56 AM	9.1063	4:19:29 AM	0.7391	8.3633
May 15, 2023	5:28:56 AM	9.0997	5:19:29 AM	0.7364	8.3566
May 15, 2023	6:28:56 AM	9.0894	6:19:29 AM	0.7328	8.3498
May 15, 2023	7:28:56 AM	9.0809	7:19:29 AM	0.7311	8.3415
May 15, 2023	8:28:56 AM	9.0676	8:19:29 AM	0.7261	8.3369
May 15, 2023	9:28:56 AM	9.0551	9:19:29 AM	0.7182	8.3314
May 15, 2023	10:28:56 AM	9.0374	10:19:29 AM	0.706	8.33
May 15, 2023	11:28:56 AM	9.0239	11:19:29 AM	0.6939	8.3293
May 15, 2023	12:28:56 PM	9.0076	12:19:29 PM	0.6783	8.3296
May 15, 2023	1:28:56 PM	8.9922	1:19:29 PM	0.6626	8.3269
May 15, 2023	2:28:56 PM	8.9785	2:19:29 PM	0.6516	8.3271
May 15, 2023	3:28:56 PM	8.962	3:19:29 PM	0.6349	8.3193
May 15, 2023	4:28:56 PM	8.9432	4:19:29 PM	0.6239	8.319
May 15, 2023	5:28:56 PM	8.9325	5:19:29 PM	0.6135	8.3127
May 15, 2023			6:19:29 PM		
	6:28:56 PM	8.9217		0.609	8.302
May 15, 2023	7:28:56 PM	8.912	7:19:29 PM	0.61	8.3012
May 15, 2023	8:28:56 PM	8.9067	8:19:29 PM	0.6055	8.2975
May 15, 2023	9:28:56 PM	8.9021	9:19:29 PM	0.6046	8.2934
May 15, 2023	10:28:56 PM	8.8967	10:19:29 PM	0.6033	8.2906
May 15, 2023	11:28:56 PM	8.8911	11:19:29 PM	0.6005	8.2918
May 16, 2023	12:28:56 AM	8.8832	12:19:29 AM	0.5914	8.2926
May 16, 2023	1:28:56 AM	8.8755	1:19:29 AM	0.5829	8.2933
May 16, 2023	2:28:56 AM	8.8671	2:19:29 AM	0.5738	8.2905
May 16, 2023	3:28:56 AM	8.8546	3:19:29 AM	0.5641	
			4:19:29 AM		8.2888 8.2871
May 16, 2023	4:28:56 AM	8.8464		0.5576	
May 16, 2023	5:28:56 AM	8.8369	5:19:29 AM	0.5498	8.2806
May 16, 2023	6:28:56 AM	8.8247	6:19:29 AM	0.5441	8.2764
May 16, 2023	7:28:56 AM	8.8153	7:19:29 AM	0.5389	8.27
May 16, 2023	8:28:56 AM	8.8031	8:19:29 AM	0.5331	8.2636
May 16, 2023	9:28:56 AM	8.7837	9:19:29 AM	0.5201	8.2605
May 16, 2023	10:28:56 AM	8.77	10:19:29 AM	0.5095	8.2559
May 16, 2023	11:28:56 AM	8.7545	11:19:29 AM	0.4986	8.2543
May 16, 2023	12:28:56 PM	8.742	12:19:29 PM	0.4877	8.2495
May 16, 2023	1:28:56 PM	8.7301	1:19:29 PM	0.4806	8.2501
May 16, 2023	2:28:56 PM	8.7518	2:19:29 PM	0.5017	8.2408
May 16, 2023	3:28:56 PM	8.759	3:19:29 PM	0.5182	8.2427
May 16, 2023	4:28:56 PM	8.7701	4:19:29 PM	0.5274	8.2384
May 16, 2023	5:28:56 PM	8.7739	5:19:29 PM	0.5355	8.2338
May 16, 2023	6:28:56 PM	8.7772	6:19:29 PM	0.5434	8.225
May 16, 2023	7:28:56 PM	8.7753	7:19:29 PM	0.5503	8.2215
May 16, 2023	8:28:56 PM	8.778	8:19:29 PM	0.5565	8.2146
May 16, 2023	9:28:56 PM	8.7786	9:19:29 PM	0.564	8.2106
May 16, 2023	10:28:56 PM	8.7821	10:19:29 PM	0.5715	8.2076
May 16, 2023	11:28:56 PM	8.7841	11:19:29 PM	0.5765	8.2066
May 17, 2023	12:28:56 AM	8.7871	12:19:29 AM	0.5805	8.2047
May 17, 2023	1:28:56 AM	8.7911	1:19:29 AM	0.5864	8.2039
May 17, 2023	2:28:56 AM	8.7943	2:19:29 AM	0.5904	8.2015
May 17, 2023	3:28:56 AM	8.7964	3:19:29 AM	0.5949	8.1996
May 17, 2023	4:28:56 AM	8.8008	4:19:29 AM	0.6012	8.195
May 17, 2023	5:28:56 AM	8.8059	5:19:29 AM	0.6109	8.1883
. ,					

May 17, 2023	6:28:56 AM	8.806	6:19:29 AM	0.6177	8.1809
May 17, 2023	7:28:56 AM	8.8092	7:19:29 AM	0.6283	8.173
May 17, 2023	8:28:56 AM	8.8109	8:19:29 AM	0.6379	8.1614
May 17, 2023	9:28:56 AM	8.8071	9:19:29 AM	0.6457	8.1546
May 17, 2023	10:28:56 AM	8.8061	10:19:29 AM	0.6515	8.1495
May 17, 2023	11:28:56 AM	8.8056	11:19:29 AM	0.6561	8.1462
May 17, 2023	12:28:56 PM		12:19:29 PM		8.1419
		8.8046		0.6584	
May 17, 2023	1:28:56 PM	8.8019	1:19:29 PM	0.66	8.138
May 17, 2023	2:28:56 PM	8.7965	2:19:29 PM	0.6585	8.1349
May 17, 2023	3:28:56 PM	8.7956	3:19:29 PM	0.6607	8.1318
May 17, 2023	4:28:56 PM	8.7916	4:19:29 PM	0.6598	8.1344
May 17, 2023	5:28:56 PM	8.795	5:19:29 PM	0.6606	8.1321
May 17, 2023	6:28:56 PM	8.7949	6:19:29 PM	0.6628	8.1277
May 17, 2023					
	7:28:56 PM	8.794	7:19:29 PM	0.6663	8.1233
May 17, 2023	8:28:56 PM	8.796	8:19:29 PM	0.6727	8.1195
May 17, 2023	9:28:56 PM	8.801	9:19:29 PM	0.6815	8.1138
May 17, 2023	10:28:56 PM	8.8025	10:19:29 PM	0.6887	8.1105
May 17, 2023	11:28:56 PM	8.8013	11:19:29 PM	0.6908	8.1111
May 18, 2023	12:28:56 AM	8.8055	12:19:29 AM	0.6944	8.108
May 18, 2023	1:28:56 AM	8.8072	1:19:29 AM	0.6992	8.1062
May 18, 2023	2:28:56 AM	8.8098	2:19:29 AM	0.7036	8.1049
	3:28:56 AM		3:19:29 AM		
May 18, 2023		8.8121		0.7072	8.102
May 18, 2023	4:28:56 AM	8.8148	4:19:29 AM	0.7128	8.0989
May 18, 2023	5:28:56 AM	8.8149	5:19:29 AM	0.716	8.0898
May 18, 2023	6:28:56 AM	8.8144	6:19:29 AM	0.7246	8.0877
May 18, 2023	7:28:56 AM	8.8194	7:19:29 AM	0.7317	8.0749
May 18, 2023	8:28:56 AM	8.814	8:19:29 AM	0.7391	8.0698
May 18, 2023	9:28:56 AM	8.8122	9:19:29 AM	0.7424	8.0635
May 18, 2023	10:28:56 AM	8.807	10:19:29 AM	0.7435	8.0585
May 18, 2023	11:28:56 AM	8.8007	11:19:29 AM	0.7422	8.0533
May 18, 2023	12:28:56 PM	8.7909	12:19:29 PM	0.7376	8.0512
May 18, 2023	1:28:56 PM	8.7846	1:19:29 PM	0.7334	8.0506
May 18, 2023	2:28:56 PM	8.7777	2:19:29 PM	0.7271	8.0509
May 18, 2023	3:28:56 PM	8.7724	3:19:29 PM	0.7215	8.0514
May 18, 2023	4:28:56 PM	8.7683	4:19:29 PM	0.7169	8.052
May 18, 2023	5:28:56 PM	8.7643	5:19:29 PM	0.7123	8.0496
May 18, 2023	6:28:56 PM	8.7623	6:19:29 PM	0.7127	8.0463
May 18, 2023	7:28:56 PM	8.7584	7:19:29 PM	0.7121	8.0407
May 18, 2023	8:28:56 PM	8.7505	8:19:29 PM	0.7098	8.0361
May 18, 2023	9:28:56 PM	8.7468	9:19:29 PM	0.7107	8.0324
May 18, 2023	10:28:56 PM	8.7453	10:19:29 PM	0.7129	8.0289
May 18, 2023	11:28:56 PM	8.7384	11:19:29 PM	0.7095	8.0272
May 19, 2023	12:28:56 AM	8.7322	12:19:29 AM	0.705	8.0264
May 19, 2023	1:28:56 AM	8.7246	1:19:29 AM	0.6982	8.0224
May 19, 2023	2:28:56 AM	8.7151	2:19:29 AM	0.6927	8.0235
May 19, 2023	3:28:56 AM	8.7071	3:19:29 AM	0.6836	8.0234
May 19, 2023	4:28:56 AM	8.7037	4:19:29 AM	0.6803	8.0215
May 19, 2023	5:28:56 AM	8.701	5:19:29 AM	0.6795	8.0118
May 19, 2023	6:28:56 AM	8.6951	6:19:29 AM	0.6833	8.0082
May 19, 2023	7:28:56 AM	8.6934	7:19:29 AM	0.6852	7.9999
May 19, 2023	8:28:56 AM	8.6841	8:19:29 AM	0.6842	7.9938
May 19, 2023	9:28:56 AM	8.6772	9:19:29 AM	0.6834	7.9886
May 19, 2023	10:28:56 AM	8.6698	10:19:29 AM	0.6812	7.981
	11:28:56 AM		11:19:29 AM		
May 19, 2023		8.6585		0.6775	7.9753
May 19, 2023	12:28:56 PM	8.647	12:19:29 PM	0.6717	7.9729
May 19, 2023	1:28:56 PM	8.6395	1:19:29 PM	0.6666	7.969
May 19, 2023	2:28:56 PM	8.6301	2:19:29 PM	0.6611	7.9685
May 19, 2023	3:28:56 PM	8.6262	3:19:29 PM	0.6577	7.9674
May 19, 2023	4:28:56 PM	8.6216	4:19:29 PM	0.6542	7.9698
May 19, 2023	5:28:56 PM	8.6196	5:19:29 PM	0.6498	7.9657
May 19, 2023	6:28:56 PM	8.6129	6:19:29 PM	0.6472	7.9632
May 19, 2023	7:28:56 PM	8.6141	7:19:29 PM	0.6509	7.9607
	8:28:56 PM			0.6515	
May 19, 2023		8.6122	8:19:29 PM		7.9581
May 19, 2023	9:28:56 PM	8.6141	9:19:29 PM	0.656	7.9539
May 19, 2023	10:28:56 PM	8.6114	10:19:29 PM	0.6575	7.9493
May 19, 2023	11:28:56 PM	8.6067	11:19:29 PM	0.6574	7.9432
May 20, 2023	12:28:56 AM	8.6012	12:19:29 AM	0.658	7.9416
May 20, 2023	1:28:56 AM	8.5961	1:19:29 AM	0.6545	7.9389
May 20, 2023	2:28:56 AM	8.5915	2:19:29 AM	0.6526	7.9391
May 20, 2023	3:28:56 AM	8.5866	3:19:29 AM	0.6475	7.9363
May 20, 2023	4:28:56 AM	8.5841	4:19:29 AM	0.6478	7.9345
May 20, 2023	5:28:56 AM	8.5801	5:19:29 AM	0.6456	7.9322
May 20, 2023	6:28:56 AM	8.5778	6:19:29 AM	0.6456	7.928
May 20, 2023	7:28:56 AM	8.5729	7:19:29 AM	0.6449	7.9206
May 20, 2023	8:28:56 AM	8.5636	8:19:29 AM	0.643	7.9127
May 20, 2023	9:28:56 AM	8.5544	9:19:29 AM	0.6417	7.9086
May 20, 2023	10:28:56 AM	8.5486	10:19:29 AM	0.64	7.9027
May 20, 2023	11:28:56 AM	8.543	11:19:29 AM	0.6403	7.9024
	12:28:56 PM	8.5343	12:19:29 PM	0.6319	7.9002
May 20, 2023					
May 20, 2023	1:28:56 PM	8.5247	1:19:29 PM	0.6245	7.8976
May 20, 2023	2:28:56 PM	8.5196	2:19:29 PM	0.622	7.8965
May 20, 2023	3:28:56 PM	8.515	3:19:29 PM	0.6185	7.8992
May 20, 2023	4:28:56 PM	8.5133	4:19:29 PM	0.6141	7.9019
May 20, 2023	5:28:56 PM	8.5074	5:19:29 PM	0.6055	7.9026

May 20, 2023	6:28:56 PM	8.5026	6:19:29 PM	0.6	7.9056
May 20, 2023	7:28:56 PM	8.5007	7:19:29 PM	0.5951	7.9005
May 20, 2023	8:28:56 PM	8.4967	8:19:29 PM	0.5962	7.8975
May 20, 2023	9:28:56 PM	8.4897	9:19:29 PM	0.5922	7.8999
May 20, 2023	10:28:56 PM	8.4848	10:19:29 PM	0.5849	7.8958
May 20, 2023	11:28:56 PM	8.4796	11:19:29 PM	0.5838	7.8959
		8.4778		0.5819	7.8929
May 21, 2023	12:28:56 AM		12:19:29 AM		
May 21, 2023	1:28:56 AM	8.4757	1:19:29 AM	0.5828	7.8897
May 21, 2023	2:28:56 AM	8.4757	2:19:29 AM	0.586	7.8882
May 21, 2023	3:28:56 AM	8.4674	3:19:29 AM	0.5792	7.8875
May 21, 2023	4:28:56 AM	8.4679	4:19:29 AM	0.5804	7.8871
May 21, 2023	5:28:56 AM	8.4692	5:19:29 AM	0.5821	7.8883
May 21, 2023	6:28:56 AM	8.4783	6:19:29 AM	0.59	7.882
May 21, 2023	7:28:56 AM	8.4839	7:19:29 AM	0.6019	7.8742
					7.8669
May 21, 2023	8:28:56 AM	8.4834	8:19:29 AM	0.6092	
May 21, 2023	9:28:56 AM	8.4837	9:19:29 AM	0.6168	7.8583
May 21, 2023	10:28:56 AM	8.4858	10:19:29 AM	0.6275	7.853
May 21, 2023	11:28:56 AM	8.4831	11:19:29 AM	0.6301	7.843
May 21, 2023	12:28:56 PM	8.4802	12:19:29 PM	0.6372	7.8382
May 21, 2023	1:28:56 PM	8.4742	1:19:29 PM	0.636	7.836
May 21, 2023	2:28:56 PM	8.4728	2:19:29 PM	0.6368	7.8343
May 21, 2023	3:28:56 PM	8.4739	3:19:29 PM	0.6396	7.8321
May 21, 2023	4:28:56 PM	8.4733	4:19:29 PM	0.6412	7.8309
		8.4811		0.6502	
May 21, 2023	5:28:56 PM		5:19:29 PM		7.8275
May 21, 2023	6:28:56 PM	8.4836	6:19:29 PM	0.6561	7.8281
May 21, 2023	7:28:56 PM	8.4929	7:19:29 PM	0.6648	7.8248
May 21, 2023	8:28:56 PM	8.4996	8:19:29 PM	0.6748	7.8243
May 21, 2023	9:28:56 PM	8.5103	9:19:29 PM	0.686	7.8201
May 21, 2023	10:28:56 PM	8.5178	10:19:29 PM	0.6977	7.8199
May 21, 2023	11:28:56 PM	8.5231	11:19:29 PM	0.7032	7.8171
May 22, 2023	12:28:56 AM	8.5256	12:19:29 AM	0.7085	7.8157
		8.5312			
May 22, 2023	1:28:56 AM		1:19:29 AM	0.7155	7.8136
May 22, 2023	2:28:56 AM	8.5335	2:19:29 AM	0.7199	7.8125
May 22, 2023	3:28:56 AM	8.5376	3:19:29 AM	0.7251	7.8108
May 22, 2023	4:28:56 AM	8.5403	4:19:29 AM	0.7295	7.8108
May 22, 2023	5:28:56 AM	8.5468	5:19:29 AM	0.736	7.8084
May 22, 2023	6:28:56 AM	8.5519	6:19:29 AM	0.7435	7.8035
May 22, 2023	7:28:56 AM	8.5569	7:19:29 AM	0.7534	7.7993
May 22, 2023	8:28:56 AM	8.5581	8:19:29 AM	0.7588	7.7918
May 22, 2023	9:28:56 AM	8.5529	9:19:29 AM	0.7611	7.7863
May 22, 2023	10:28:56 AM	8.548	10:19:29 AM	0.7617	7.7799
May 22, 2023	11:28:56 AM	8.5415	11:19:29 AM	0.7616	7.7738
May 22, 2023	12:28:56 PM	8.5331	12:19:29 PM	0.7593	7.7679
May 22, 2023	1:28:56 PM	8.5245	1:19:29 PM	0.7566	7.7637
May 22, 2023	2:28:56 PM	8.5165	2:19:29 PM	0.7528	7.7593
May 22, 2023	3:28:56 PM	8.5079	3:19:29 PM	0.7486	7.7505
May 22, 2023	4:28:56 PM	8.4944	4:19:29 PM	0.7439	7.7409
May 22, 2023	5:28:56 PM	8.4824	5:19:29 PM	0.7415	7.749
May 22, 2023	6:28:56 PM	8.4904	6:19:29 PM	0.7414	7.7506
	7:28:56 PM		7:19:29 PM	0.743	7.7487
May 22, 2023		8.4936			
May 22, 2023	8:28:56 PM	8.4929	8:19:29 PM	0.7442	7.7469
May 22, 2023	9:28:56 PM	8.4959	9:19:29 PM	0.749	7.7461
May 22, 2023	10:28:56 PM	8.498	10:19:29 PM	0.7519	7.7453
May 22, 2023	11:28:56 PM	8.4953	11:19:29 PM	0.75	7.7467
May 23, 2023	12:28:56 AM	8.4953	12:19:29 AM	0.7486	7.7447
May 23, 2023	1:28:56 AM	8.4909	1:19:29 AM	0.7462	7.7434
May 23, 2023	2:28:56 AM	8.4901	2:19:29 AM	0.7467	7.7445
May 23, 2023	3:28:56 AM	8.4916	3:19:29 AM	0.7471	7.7432
	4:28:56 AM	8.491	4:19:29 AM	0.7478	7.7424
May 23, 2023					
May 23, 2023	5:28:56 AM	8.4923	5:19:29 AM	0.7499	7.7372
May 23, 2023	6:28:56 AM	8.4881	6:19:29 AM	0.7509	7.7344
May 23, 2023	7:28:56 AM	8.4883	7:19:29 AM	0.7539	7.7292
May 23, 2023	8:28:56 AM	8.4847	8:19:29 AM	0.7555	7.7247
May 23, 2023	9:28:56 AM	8.4789	9:19:29 AM	0.7542	7.7221
May 23, 2023	10:28:56 AM	8.4729	10:19:29 AM	0.7508	7.7168
May 23, 2023	11:28:56 AM	8.4654	11:19:29 AM	0.7486	7.7129
May 23, 2023	12:28:56 PM	8.4528	12:19:29 PM	0.7399	7.7088
May 23, 2023	1:28:56 PM	8.4404	1:19:29 PM	0.7316	7.7061
	2:28:56 PM		2:19:29 PM		
May 23, 2023		8.4287		0.7226	7.7042
May 23, 2023	3:28:56 PM	8.4192	3:19:29 PM	0.715	7.7046
May 23, 2023	4:28:56 PM	8.4113	4:19:29 PM	0.7067	7.7031
May 23, 2023	5:28:56 PM	8.4016	5:19:29 PM	0.6985	7.7014
May 23, 2023	6:28:56 PM	8.394	6:19:29 PM	0.6926	7.7018
May 23, 2023	7:28:56 PM	8.3878	7:19:29 PM	0.686	7.6995
May 23, 2023	8:28:56 PM	8.3823	8:19:29 PM	0.6828	7.6963
May 23, 2023	9:28:56 PM	8.3764	9:19:29 PM	0.6801	7.6982
May 23, 2023	10:28:56 PM	8.3762	10:19:29 PM	0.678	7.698
May 23, 2023	11:28:56 PM	8.372	11:19:29 PM	0.674	7.6991
May 24, 2023	12:28:56 AM	8.3686	12:19:29 AM	0.6695	7.6945
May 24, 2023	1:28:56 AM	8.3583	1:19:29 AM	0.6638	7.6931
May 24, 2023	2:28:56 AM	8.3536	2:19:29 AM	0.6605	7.695
May 24, 2023	3:28:56 AM	8.3555	3:19:29 AM	0.6605	7.6927
May 24, 2023	4:28:56 AM	8.3562	4:19:29 AM	0.6635	7.6902
May 24, 2023	5:28:56 AM	8.354	5:19:29 AM	0.6638	7.6861

May 24, 2023	6:28:56 AM	8.3495	6:19:29 AM	0.6634	7.6853
May 24, 2023	7:28:56 AM	8.3585	7:19:29 AM	0.6732	7.6828
May 24, 2023	8:28:56 AM	8.3633	8:19:29 AM	0.6805	7.6747
May 24, 2023	9:28:56 AM	8.3603	9:19:29 AM	0.6856	7.6777
May 24, 2023	10:28:56 AM	8.3703	10:19:29 AM	0.6926	7.6745
May 24, 2023	11:28:56 AM	8.3773	11:19:29 AM		
				0.7028	7.6682
May 24, 2023	12:28:56 PM	8.3761	12:19:29 PM	0.7079	7.6638
May 24, 2023	1:28:56 PM	8.3732	1:19:29 PM	0.7094	7.6614
May 24, 2023	2:28:56 PM	8.3708	2:19:29 PM	0.7094	7.6565
May 24, 2023	3:28:56 PM	8.3673	3:19:29 PM	0.7108	7.6534
May 24, 2023	4:28:56 PM	8.3681	4:19:29 PM	0.7147	7.6527
May 24, 2023	5:28:56 PM	8.3675	5:19:29 PM	0.7148	7.6515
May 24, 2023	6:28:56 PM	8.3706	6:19:29 PM	0.7191	7.649
May 24, 2023	7:28:56 PM	8.375	7:19:29 PM	0.726	7.6485
May 24, 2023	8:28:56 PM	8.3807	8:19:29 PM	0.7322	7.6474
May 24, 2023	9:28:56 PM	8.3831	9:19:29 PM	0.7357	7.6478
May 24, 2023	10:28:56 PM	8.3856	10:19:29 PM	0.7378	7.6471
May 24, 2023	11:28:56 PM	8.3866	11:19:29 PM	0.7395	7.6454
May 25, 2023	12:28:56 AM	8.3883	12:19:29 AM	0.7429	7.6458
May 25, 2023	1:28:56 AM	8.3877	1:19:29 AM	0.7419	7.6462
May 25, 2023	2:28:56 AM	8.3881	2:19:29 AM	0.7419	7.6437
May 25, 2023	3:28:56 AM	8.3856	3:19:29 AM	0.7419	7.6418
May 25, 2023	4:28:56 AM	8.386	4:19:29 AM	0.7442	7.6408
			5:19:29 AM		
May 25, 2023	5:28:56 AM	8.3868		0.746	7.6345
May 25, 2023	6:28:56 AM	8.3847	6:19:29 AM	0.7502	7.6311
May 25, 2023	7:28:56 AM	8.385	7:19:29 AM	0.7539	7.6297
May 25, 2023	8:28:56 AM	8.3865	8:19:29 AM	0.7568	7.6259
May 25, 2023	9:28:56 AM	8.3858	9:19:29 AM	0.7599	7.6232
May 25, 2023	10:28:56 AM	8.381	10:19:29 AM	0.7578	7.6187
May 25, 2023	11:28:56 AM	8.3731	11:19:29 AM	0.7544	7.6147
May 25, 2023	12:28:56 PM	8.3658	12:19:29 PM	0.7511	7.6106
	1:28:56 PM	8.3572	1:19:29 PM	0.7466	7.6069
May 25, 2023					
May 25, 2023	2:28:56 PM	8.3518	2:19:29 PM	0.7449	7.6033
May 25, 2023	3:28:56 PM	8.3425	3:19:29 PM	0.7392	7.5961
May 25, 2023	4:28:56 PM	8.3315	4:19:29 PM	0.7354	7.5949
May 25, 2023	5:28:56 PM	8.3238	5:19:29 PM	0.7289	7.5945
May 25, 2023	6:28:56 PM	8.3185	6:19:29 PM	0.724	7.5946
May 25, 2023	7:28:56 PM	8.3194	7:19:29 PM	0.7248	7.5947
May 25, 2023	8:28:56 PM	8.3254	8:19:29 PM	0.7307	7.5943
May 25, 2023	9:28:56 PM	8.3294	9:19:29 PM	0.7351	7.5928
May 25, 2023	10:28:56 PM	8.3311	10:19:29 PM	0.7383	7.5922
May 25, 2023	11:28:56 PM	8.3309	11:19:29 PM	0.7387	7.5943
May 26, 2023	12:28:56 AM	8.3336	12:19:29 AM	0.7393	7.5933
May 26, 2023	1:28:56 AM	8.3323	1:19:29 AM	0.739	7.5931
May 26, 2023	2:28:56 AM	8.3316	2:19:29 AM	0.7385	7.5912
May 26, 2023	3:28:56 AM	8.3321	3:19:29 AM	0.7409	7.5895
May 26, 2023	4:28:56 AM	8.3331	4:19:29 AM	0.7436	7.5869
May 26, 2023	5:28:56 AM	8.3349	5:19:29 AM	0.748	7.5796
May 26, 2023	6:28:56 AM	8.3338	6:19:29 AM	0.7542	7.5776
			7:19:29 AM	0.7624	7.5745
May 26, 2023	7:28:56 AM	8.34			
May 26, 2023	8:28:56 AM	8.3413	8:19:29 AM	0.7668	7.5688
May 26, 2023	9:28:56 AM	8.3394	9:19:29 AM	0.7706	7.5664
May 26, 2023	10:28:56 AM	8.3356	10:19:29 AM	0.7692	7.5619
May 26, 2023	11:28:56 AM	8.33	11:19:29 AM	0.7681	7.56
May 26, 2023	12:28:56 PM	8.3218	12:19:29 PM	0.7618	7.5546
May 26, 2023	1:28:56 PM	8.3115	1:19:29 PM	0.7569	7.5502
May 26, 2023	2:28:56 PM	8.3048	2:19:29 PM	0.7546	7.5491
May 26, 2023	3:28:56 PM	8.3004	3:19:29 PM	0.7513	7.5448
May 26, 2023	4:28:56 PM	8.295	4:19:29 PM	0.7502	7.5389
May 26, 2023		8.2871	5:19:29 PM	0.7482	7.5357
	5:28:56 PM				
May 26, 2023	6:28:56 PM	8.2807	6:19:29 PM	0.745	7.5333
May 26, 2023	7:28:56 PM	8.2736	7:19:29 PM	0.7403	7.5307
May 26, 2023	8:28:56 PM	8.2714	8:19:29 PM	0.7407	7.531
May 26, 2023	9:28:56 PM	8.2712	9:19:29 PM	0.7402	7.5307
May 26, 2023	10:28:56 PM	8.2757	10:19:29 PM	0.745	7.5293
May 26, 2023	11:28:56 PM	8.2774	11:19:29 PM	0.7481	7.5292
May 27, 2023	12:28:56 AM	8.2777	12:19:29 AM	0.7485	7.5288
May 27, 2023	1:28:56 AM	8.2745	1:19:29 AM	0.7457	7.5301
May 27, 2023	2:28:56 AM	8.2769	2:19:29 AM	0.7468	7.5259
May 27, 2023	3:28:56 AM	8.278	3:19:29 AM	0.7521	7.5262
May 27, 2023	4:28:56 AM	8.2795	4:19:29 AM	0.7521	7.526
May 27, 2023		8.2793	5:19:29 AM		
	5:28:56 AM			0.7533	7.5238
May 27, 2023	6:28:56 AM	8.2814	6:19:29 AM	0.7576	7.5182
May 27, 2023	7:28:56 AM	8.2796	7:19:29 AM	0.7614	7.5116
May 27, 2023	8:28:56 AM	8.2771	8:19:29 AM	0.7655	7.5061
May 27, 2023	9:28:56 AM	8.271	9:19:29 AM	0.7649	7.5007
May 27, 2023	10:28:56 AM	8.2627	10:19:29 AM	0.762	7.4986
May 27, 2023	11:28:56 AM	8.2579	11:19:29 AM	0.7593	7.4953
May 27, 2023	12:28:56 PM	8.2505	12:19:29 PM	0.7552	7.4904
May 27, 2023	1:28:56 PM	8.239	1:19:29 PM	0.7486	7.4849
May 27, 2023	2:28:56 PM	8.227	2:19:29 PM	0.7480	7.4809
			3:19:29 PM		
May 27, 2023	3:28:56 PM	8.2151		0.7342	7.4687
May 27, 2023	4:28:56 PM	8.1983	4:19:29 PM	0.7296	7.47
May 27, 2023	5:28:56 PM	8.1944	5:19:29 PM	0.7244	7.4649

May 27, 2023	6:28:56 PM	8.1847	6:19:29 PM	0.7198	7.4628
May 27, 2023	7:28:56 PM	8.1811	7:19:29 PM	0.7183	7.4615
May 27, 2023	8:28:56 PM	8.1807	8:19:29 PM	0.7192	7.4592
May 27, 2023	9:28:56 PM	8.1819	9:19:29 PM	0.7227	7.4598
May 27, 2023	10:28:56 PM	8.1824	10:19:29 PM	0.7226	7.4619
May 27, 2023	11:28:56 PM	8.1844	11:19:29 PM	0.7225	7.4618
May 28, 2023	12:28:56 AM	8.1845	12:19:29 AM	0.7227	7.4625
May 28, 2023	1:28:56 AM	8.1825	1:19:29 AM	0.72	7.463
May 28, 2023	2:28:56 AM	8.1809	2:19:29 AM	0.7179	7.4617
May 28, 2023	3:28:56 AM	8.1771	3:19:29 AM	0.7154	7.4601
May 28, 2023	4:28:56 AM	8.1721	4:19:29 AM	0.712	7.4596
May 28, 2023	5:28:56 AM	8.1711	5:19:29 AM	0.7115	7.4594
May 28, 2023	6:28:56 AM	8.1688	6:19:29 AM	0.7094	7.4566
May 28, 2023	7:28:56 AM	8.1623	7:19:29 AM	0.7057	7.4532
May 28, 2023	8:28:56 AM	8.1561	8:19:29 AM	0.7029	7.44
May 28, 2023	9:28:56 AM	8.1408	9:19:29 AM	0.7008	7.4412
May 28, 2023	10:28:56 AM	8.1364	10:19:29 AM	0.6952	7.4339
May 28, 2023	11:28:56 AM	8.1275	11:19:29 AM	0.6936	7.4318
May 28, 2023	12:28:56 PM	8.1207	12:19:29 PM	0.6889	7.4254
May 28, 2023	1:28:56 PM	8.1048	1:19:29 PM	0.6794	7.4141
May 28, 2023	2:28:56 PM	8.0849	2:19:29 PM	0.6708	7.4122
May 28, 2023	3:28:56 PM	8.076	3:19:29 PM	0.6638	7.4074
May 28, 2023	4:28:56 PM	8.065	4:19:29 PM	0.6576	7.4003
May 28, 2023	5:28:56 PM	8.0543	5:19:29 PM	0.654	7.3979
May 28, 2023	6:28:56 PM	8.0468	6:19:29 PM	0.6489	7.395
May 28, 2023	7:28:56 PM	8.04	7:19:29 PM	0.645	7.3915
May 28, 2023	8:28:56 PM	8.0394	8:19:29 PM	0.6479	7.388
May 28, 2023	9:28:56 PM	8.0393	9:19:29 PM	0.6513	7.3855
May 28, 2023	10:28:56 PM	8.0496	10:19:29 PM	0.6641	7.3859
May 28, 2023	11:28:56 PM	8.0476	11:19:29 PM	0.6617	7.3897
May 29, 2023	12:28:56 AM	8.0552	12:19:29 AM	0.6655	7.3882
May 29, 2023	1:28:56 AM	8.0586	1:19:29 AM	0.6704	7.3892
May 29, 2023	2:28:56 AM	8.064	2:19:29 AM	0.6748	7.3887
May 29, 2023	3:28:56 AM	8.0675	3:19:29 AM	0.6788	7.3876
May 29, 2023	4:28:56 AM	8.0698	4:19:29 AM	0.6822	7.3849
May 29, 2023	5:28:56 AM	8.0703	5:19:29 AM	0.6854	7.3774
May 29, 2023	6:28:56 AM	8.0716	6:19:29 AM	0.6942	7.378
May 29, 2023	7:28:56 AM	8.0762	7:19:29 AM	0.6982	7.3726
May 29, 2023	8:28:56 AM	8.0756	8:19:29 AM	0.703	7.366
May 29, 2023	9:28:56 AM	8.072	9:19:29 AM	0.706	7.3622
May 29, 2023	10:28:56 AM	8.0715	10:19:29 AM	0.7093	7.3573
May 29, 2023	11:28:56 AM	8.0643	11:19:29 AM	0.707	7.3531
May 29, 2023	12:28:56 PM	8.0565	12:19:29 PM	0.7034	7.3529
May 29, 2023	1:28:56 PM	8.0537	1:19:29 PM	0.7008	7.3511
	MAY	10.0200			0.2010
	MAX	10.0309			9.3018

8.0393 **1.9916**

MIN DIFFERENCE 7.3511 **1.9507**

HYDROGEOLOGICAL ASSESSMENT AND TERRAIN ANALYSIS GRIZZLY HOMES SUBDIVISION, BECKWITH, ONTARIO

APPENDIX I: TEST PIT LOGS

TEST PIT NUMBER TP1 PAGE 1 OF 1

	Mcintosh Perry
M	115 Walgreen Road
\mathbf{I}	Carp K0A 1L0

' '		Carp K	.0A 1L0				
CLIEN	T Grizz	zly Hon	nes	PROJECT NAME Franktown Subd	livision Review		
PROJE	ECT NUM	MBER	CCO-22-0256	PROJECT LOCATION			
DATE	STARTE	D 21	-12-14 COMPLETED 21-12-14	GROUND ELEVATION	TEST PIT SIZE 1m		
EXCA	VATION (CONT	RACTOR Grizzly Homes	GROUND WATER LEVELS:			
l			CAT 303E CR	AT TIME OF EXCAVATION			
l			CHECKED BY PL	AT END OF EXCAVATION			
l							
DEPTH (m)	SAMPLE TYPE NUMBER	GRAPHIC LOG	Topsoil 0.20 Sandy gravel/gravelly	MATERIAL DESCRIPTION			
	SS		sand, trace clay (wet)				
		, ——	EOH, refusal on bedrock	Bottom of test pit at 0.40 m.			

~	1 L)	115 W	sh Perry algreen Ro 0A 1L0	ad		TEST PIT NUMBER TP2 PAGE 1 OF 1				
CLIEN	IT Griz	zly Hor	nes		PROJECT NAME Franktown Subdivision Review					
PROJ	ECT NUI	MBER	CCO-22-0	0256	PROJECT LOCATION					
DATE	ATE STARTED 21-12-14 COMPLETED 21-12-14				GROUND ELEVATION	TEST PIT SIZE 1m				
					GROUND WATER LEVELS:					
				803E CR						
					AT END OF EXCAVATION					
NOTE	S Rev.1		.		AFTER EXCAVATION 1.08	m				
DEPTH (m)	SAMPLE TYPE NUMBER	GRAPHIC LOG			MATERIAL DESCRIPTION					
		7 1/2 7/ 1/2 1/3 1/3 2/4 1/3 1/4	Т	opsoil						
		1, 11,	0.18	andy Gravel/Gravelly sand, some s	ilt/olov					
				rith cobbles up to 6 inches (wet)	шисау					
-	-									
0.5										
- 0.0	1									
L .										
ļ .										
-	1									
-	-									
1.0										
			_							
<u> </u>	-		Ā							
5										
-	1									
5										
-	1									
L										
_										
1.5	1									
-	1									
	ss		1.70							
<u> </u>	<u> </u>			OH, refusal on bedrock	5					
					Bottom of test pit at 1.70 m.					
5										
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0										
5 L										

	1Р т <u>Griz</u>	115 W Carp k zly Hor					PROJECT NAME Franktown PROJECT LOCATION									
															m	_
	EXCAVATION CONTRACTOR Grizzly Homes EXCAVATION METHOD CAT 303E CR											<u>-</u>	•••			
EXCA						_	AT TIME	OF EXC	VATION							
	OGGED BY EW CHECKED BY PL															
NOTES	FES Rev.1				▼ AFTER EXCAVATION 0.80 m											
DEPTH (m)	SAMPLE TYPE NUMBER	GRAPHIC LOG						MATER	RIAL DES	SCRIPTIO	N					
				opsoil												
GINT STD CANADA LAB. GDT 22-1-11 GINT STD CANADA LAB. GDT 22-1-11 O					-	-	ome silt/clay epth) (wet)	y (gravel s	size rang	ing from fi	ne grains	up to 1				
KTOWN.GPJ	SS															
FRAN	1_		1.45 E	OH, refus	al on bed	rock		_								_
GENERAL BH / TP / WELL GRIZZLY HOMES - FRANKTOWN.GPJ GINT STD CANADA LAB.GDT 22-1-11								Boti	tom of te	st pit at 1.4	45 m.					

TEST PIT NUMBER TP4 Mcintosh Perry PAGE 1 OF 1 115 Walgreen Road Carp K0Ă 1L0 PROJECT NAME Franktown Subdivision Review CLIENT Grizzly Homes PROJECT NUMBER CCO-22-0256 PROJECT LOCATION **DATE STARTED** 21-12-14 **COMPLETED** 21-12-14 GROUND ELEVATION ______ TEST PIT SIZE _ 1m EXCAVATION CONTRACTOR Grizzly Homes **GROUND WATER LEVELS:** EXCAVATION METHOD CAT 303E CR AT TIME OF EXCAVATION _---AT END OF EXCAVATION _---LOGGED BY EW CHECKED BY PL ▼ AFTER EXCAVATION 3.70 m NOTES Rev.1 SAMPLE TYPE NUMBER GRAPHIC LOG MATERIAL DESCRIPTION Topsoil <u> 11/1</u> 1/ 1/1/ Sandy gravel/gravelly sand, trace silt/clay 0.5 SS 0.55 2 Sandy gravel/gravelly sand, trace silt/clay (wet) SS EOH, refusal on bedrock Bottom of test pit at 0.70 m.

Mcintosh Perry 115 Walgreen Road Carp K0A 1L0 TEST PIT NUMBER TP5 PAGE 1 OF 1

١.		Carp K	.UA 1LU					
CLIEN	T Grizz	zly Hor	nes	PROJECT NAME Franktown S	ubdivision Review			
PROJE	ECT NUM	IBER	CCO-22-0256	PROJECT LOCATION				
DATE	STARTE	D 21	-12-14 COMPLETED 21-12-14	GROUND ELEVATION	TEST PIT SIZE 1m			
EXCA	/ATION	CONTI	RACTOR Grizzly Homes					
EXCA	/ATION I	METHO	DD CAT 303E CR	AT TIME OF EXCAVATION				
LOGG	ED BY _	EW	CHECKED BY PL	AT END OF EXCAVATION				
DEPTH (m)	SAMPLE TYPE NUMBER	GRAPHIC LOG	Topsoil	MATERIAL DESCRIPTION				
		10.00	0.10					
			Red/ brown gravelly sand, trace silt/clay					
	ss		0.38					
	1_		EOH, refusal on bedrock	Bottom of test pit at 0.38 m.				

 	1 L)	115 W	sh Perry algreen Road (0A 1L0	TEST PIT NUMBER TI					
CLIEN	T Grizz	zly Hor	nes						
PROJE	ECT NUM	/IBER	CCO-22-0256	PROJECT LOCATION					
DATE	STARTE	D 21	-12-14 COMPLETED 21-12-14	GROUND ELEVATION	TEST PIT SIZE 1m				
EXCA	/ATION	CONT	RACTOR Grizzly Homes	GROUND WATER LEVELS:					
EXCA	/ATION	METH	CAT 303E CR	AT TIME OF EXCAVATION					
LOGG	ED BY _	EW	CHECKED BY PL	AT END OF EXCAVATION					
NOTES	8 Rev.1			AFTER EXCAVATION					
DEPTH (m)	SAMPLE TYPE NUMBER	GRAPHIC LOG		MATERIAL DESCRIPTION					
		7 1/2 7/1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	Topooli						
 	SS		Gravelly sand, trace silt/clay, with some la present	arger weathered bedrock fragments					
	1_		EOH, refusal on bedrock	Bottom of test pit at 0.45 m.					

MI	 11	cintosh Pe 5 Walgre arp K0A 1	en Road				TEST	PIT NUMBER T PAGE 1	
CLIENT _	Grizzly	Homes				PROJECT NAME Franktow	n Subdivision	Review	
						GROUND ELEVATION	TES1	PIT SIZE 1m	
EXCAVATION METHOD CAT 2025 CD									
EXCAVATION METHOD CAT 303E CR LOGGED BY EW CHECKED BY PL						AT TIME OF EXCAVATION			
	IOTES Rev.1								
DEPTH (m)	NUMBER	LOG			М	ATERIAL DESCRIPTION			
		1/2 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Topsoil	I					
	1 <u>2</u>	0.20							
1				avelly sand, ilt/clay (wet)					
-									
+									
0.5									
			T						
	ss	0.70							
	1)-	10.70	EOH, r	efusal on bedrock		Bottom of test pit at 0.70 m.			
						Bottom of toot pit at 0.70 m.			

TEST PIT NUMBER TP8

 	1 D	115 W	sh Perry algreen Road (0A 1L0				IESI PII NU	PAGE 1 OF 1
CLIEN	T Grizz	zly Hor	nes			PROJECT NAME Franktown Su	ubdivision Review	
PROJ	ECT NUN	/IBER				PROJECT LOCATION		
				COMPLETED _		GROUND ELEVATION	TEST PIT SIZE	1m
EXCA	VATION	CONT	RACTOR Grizzly	/ Homes		GROUND WATER LEVELS:		
EXCA	VATION	METH	OD <u>CAT 303E C</u>	R		AT TIME OF EXCAVATION		
LOGG	ED BY	EW		CHECKED BY	PL	AT END OF EXCAVATION	-	
NOTE	S <u>Rev.1</u>					AFTER EXCAVATION		
DEPTH (m)	SAMPLE TYPE NUMBER	GRAPHIC LOG				MATERIAL DESCRIPTION		
		711						
-			Gravelly silt/clay	/ sand, trace				
			Silvciay					
-	SS		0.25					
	<u> </u>) 		efusal on bedrock		Dattom of toot nit at 0.05 m		

Bottom of test pit at 0.25 m.

TEST PIT NUMBER TP9 PAGE 1 OF 1

M	Mcintosh Perry 115 Walgreen Road
	Carp K0A 1L0

PROJECT NAME Franktown Subdivision Review CLIENT Grizzly Homes PROJECT NUMBER CCO-22-0256 PROJECT LOCATION _____ DATE STARTED 21-12-14 COMPLETED 21-12-14 GROUND ELEVATION _____ TEST PIT SIZE 1m EXCAVATION CONTRACTOR Grizzly Homes GROUND WATER LEVELS: EXCAVATION METHOD CAT 303E CR AT TIME OF EXCAVATION _---LOGGED BY EW CHECKED BY PL AT END OF EXCAVATION _---NOTES Rev.1 AFTER EXCAVATION _---SAMPLE TYPE NUMBER GRAPHIC LOG MATERIAL DESCRIPTION Topsoil 1/ 1/ Sandy gravel/gravelly sand, some silt/clay SS

EOH, refusal on bedrock

Bottom of test pit at 0.30 m.

TEST PIT NUMBER TP10 Mcintosh Perry PAGE 1 OF 1 115 Walgreen Road Carp K0Ă 1L0 PROJECT NAME Franktown Subdivision Review CLIENT Grizzly Homes PROJECT NUMBER CCO-22-0256 PROJECT LOCATION _____ DATE STARTED 21-12-14 COMPLETED 21-12-14 GROUND ELEVATION _____ TEST PIT SIZE 1m EXCAVATION CONTRACTOR Grizzly Homes GROUND WATER LEVELS: EXCAVATION METHOD CAT 303E CR AT TIME OF EXCAVATION _---LOGGED BY EW CHECKED BY PL AT END OF EXCAVATION _---NOTES Rev.1 AFTER EXCAVATION _---SAMPLE TYPE NUMBER GRAPHIC LOG MATERIAL DESCRIPTION Topsoil

EOH, refusal on bedrock

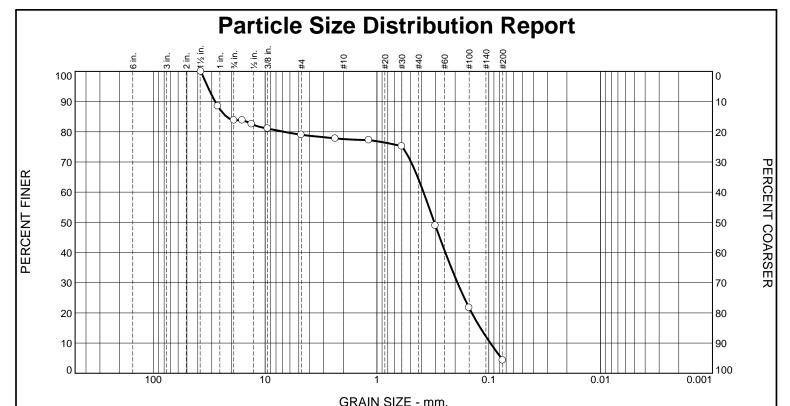
Bottom of test pit at 0.17 m.

TEST PIT NUMBER TP11 Mcintosh Perry 115 Walgreen Road Carp K0A 1L0

PAGE	1	OF	1

PROJE DATE S EXCAN EXCAN LOGGI	STARTEI /ATION (/ATION N	IBER D 21 CONTE	CCO-22-0256 -12-14	GROUND WATER LEVELS: AT TIME OF EXCAVATION AT END OF EXCAVATION
DEPTH (m)	SAMPLE TYPE NUMBER	GRAPHIC LOG		MATERIAL DESCRIPTION
		7 77	Topsoil	
_			Brown/ red gravelly sand, trace silt/clay	
	SS 1		0.30	
	<u> </u>		EOH, refusal on bedrock	Bottom of test pit at 0.30 m.

TEST PIT NUMBER TP12 Mcintosh Perry 115 Walgreen Road Carp K0A 1L0


PAGE	1	ΟF	1

CLIENT	「 Grizz	ly Hon	nes	PROJECT NAME Franktown Subdivision Review				
PROJE	CT NUM	IBER .	CCO-22-0256	PROJECT LOCATION				
DATE S	STARTE	D _21	-12-14 COMPLETED 21-12-14	GROUND ELEVATION TEST PIT SIZE _1m				
EXCAV	ATION (CONTR	RACTOR Grizzly Homes	GROUND WATER LEVELS:				
EXCAV	ATION N	ИЕТНО	CAT 303E CR	AT TIME OF EXCAVATION				
LOGGE	D BY	EW	CHECKED BY PL					
NOTES	Rev.1							
	/PE	O						
DEPTH (m)	E T IBEF	GRAPHIC LOG		MATERIAL DESCRIPTION				
	JPL JUM	IRA LC		WATERIAL DESCRIPTION				
	SAMPLE TYPE NUMBER	ا						
		71 14. 1	Topsoil					
		1/ 3/1/	·					
		<u>11.7</u>						
		12 11						
_ 1		7.7.7	0.25					
_			Brown gravelly sand,					
			trace silt/clay					
_	SS 1		0.40					
			Grey silty gravelly sand, trace clay					
0.5			olay					
	SS							
			0.60 EOH, refusal on bedrock					
				Bottom of test pit at 0.60 m.				

TEST PIT NUMBER TP13 Mcintosh Perry PAGE 1 OF 1 115 Walgreen Road Carp K0Ă 1L0 PROJECT NAME Franktown Subdivision Review CLIENT Grizzly Homes PROJECT NUMBER CCO-22-0256 PROJECT LOCATION **DATE STARTED** 21-12-14 **COMPLETED** 21-12-14 GROUND ELEVATION _____ TEST PIT SIZE _1m EXCAVATION CONTRACTOR Grizzly Homes **GROUND WATER LEVELS:** EXCAVATION METHOD CAT 303E CR AT TIME OF EXCAVATION _---LOGGED BY EW CHECKED BY PL AT END OF EXCAVATION _---**▼ AFTER EXCAVATION** 0.73 m NOTES Rev.1 SAMPLE TYPE NUMBER GRAPHIC LOG MATERIAL DESCRIPTION Topsoil <u> 11/1</u> <u>1, 11,</u> Brown gravelly sand, trace silt/clay 0.5 0.65 Grey silty gravelly sand, trace clay with cobbles up to 4 inches 0.85 EOH, refusal on bedrock Bottom of test pit at 0.85 m.

TEST PIT NUMBER TP14 Mcintosh Perry PAGE 1 OF 1 115 Walgreen Road Carp K0Ă 1L0 PROJECT NAME Franktown Subdivision Review CLIENT Grizzly Homes PROJECT NUMBER CCO-22-0256 PROJECT LOCATION DATE STARTED 21-12-14 COMPLETED 21-12-14 GROUND ELEVATION _____ TEST PIT SIZE 1m EXCAVATION CONTRACTOR Grizzly Homes **GROUND WATER LEVELS:** EXCAVATION METHOD CAT 303E CR AT TIME OF EXCAVATION _---LOGGED BY EW CHECKED BY PL AT END OF EXCAVATION _---NOTES Rev.1 AFTER EXCAVATION _---SAMPLE TYPE NUMBER GRAPHIC LOG MATERIAL DESCRIPTION Topsoil 0.5 1/ 1/1/ Silty gravelly sand, trace clay (very dry, crumbly) 1.0 SS EOH, refusal on bedrock Bottom of test pit at 1.20 m.

TEST PIT NUMBER TP15 Mcintosh Perry PAGE 1 OF 1 115 Walgreen Road Carp K0Ă 1L0 PROJECT NAME Franktown Subdivision Review CLIENT Grizzly Homes PROJECT NUMBER CCO-22-0256 PROJECT LOCATION **DATE STARTED** 21-12-14 **COMPLETED** 21-12-14 GROUND ELEVATION ______ TEST PIT SIZE _ 1m **EXCAVATION CONTRACTOR** Grizzly Homes **GROUND WATER LEVELS:** EXCAVATION METHOD CAT 303E CR AT TIME OF EXCAVATION _---LOGGED BY EW _____ CHECKED BY PL AT END OF EXCAVATION _---**▼ AFTER EXCAVATION** 0.50 m NOTES Rev.1 SAMPLE TYPE NUMBER GRAPHIC LOG MATERIAL DESCRIPTION Topsoil 1, 11, <u>11. 7</u> Gravelly sand, trace silt/clay, with cobbles (wet) 0.5 $\bar{\mathbf{A}}$ SS EOH, refusal on bedrock Bottom of test pit at 0.65 m.

% +75mm	% Gı	ravel	% Sand			% Fines		
76 +75HIII	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	16.2	4.8	1.4	13.3	60.0	4.3		

	TEST RE	SULTS	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
37.5mm	100.0		
26.5mm	88.5		
19.0mm	83.8		
16.0mm	83.8		
13.2mm	82.6		
9.5mm	81.1		
4.75mm	79.0		
2.36mm	77.8		
1.18mm	77.2		
0.600mm	75.2		
0.300mm	48.9		
0.150mm	21.7		
0.075mm	4.3		

Material Description Gravelly Sand trace Silt/Clay										
Atte	erberg Limits (ASTM LL=	D 4318) Pl=								
USCS (D 2487)=	SP Classification AASHTO (F	M 145)=								
D₉₀= 27.9823 D₅₀= 0.3072 D₁₀= 0.0968	Coefficients D ₈₅ = 22.1134 D ₃₀ = 0.1906 C _u = 3.97	D ₆₀ = 0.3837 D ₁₅ = 0.1187 C _c = 0.98								
F.M.=2.55	Remarks									
	Date Received: Apr 24,2023 Date Tested: Apr 25,2023 Tested By: J.H-J									
	Checked By: J.Hopwood-Jones Title: Lab Manager									
litie: L	Lab Manager									

(no specification provided)

Location: TP6
Sample Number: SS-1 Depth: 0.45m

Client: Grizzly Homes
Project: Grizzly homes

Project No: CCO-220256

Figure

Date Sampled: Dec 14,2021

McINTOSH PERRY

GRAIN SIZE DISTRIBUTION TEST DATA

2023-05-01

Client: Grizzly Homes **Project:** Grizzly homes

Project Number: CCO-220256

Location: TP6

Depth: 0.45m Sample Number: SS-1

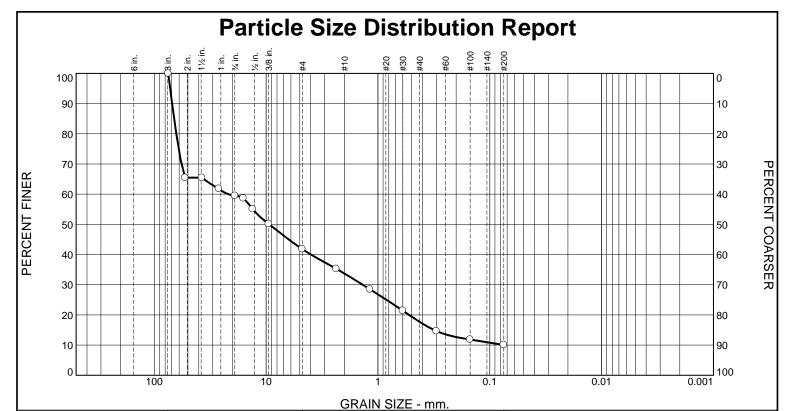
Material Description: Gravelly Sand trace Silt/Clay

Sample Date: Dec 14,2021 Date Received: Apr 24,2023 USCS Classification: SP

Tested By: J.H-J Test Date: Apr 25,2023 Checked By: J.Hopwood-Jones Title: Lab Manager

Sieve Test Data

Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained	
715.03	0.00	0.00	37.5mm	0.00	100.0	0.0	
			26.5mm	82.09	88.5	11.5	
			19.0mm	115.60	83.8	16.2	
			16.0mm	115.60	83.8	16.2	
			13.2mm	124.73	82.6	17.4	
			9.5mm	135.37	81.1	18.9	
			4.75mm	150.00	79.0	21.0	
			2.36mm	158.82	77.8	22.2	
			1.18mm	162.78	77.2	22.8	
			0.600mm	177.39	75.2	24.8	
			0.300mm	365.16	48.9	51.1	
			0.150mm	559.87	21.7	78.3	
			0.075mm	684.11	4.3	95.7	


Fractional Components

Cobbles	Gravel				Sa	nd	Fines			
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	16.2	4.8	21.0	1.4	13.3	60.0	74.7			4.3

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0774	0.0968	0.1187	0.1419	0.1906	0.2446	0.3072	0.3837	6.7881	22.1134	27.9823	32.6677

Fineness Modulus	(C _C
2.55	3.97	0.98

_ McIntosh Perry _____

% +75mm	% Gı	avel		% Sand	i	% Fines		
	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay	
0.0	40.5	17.7	8.1	16.0	7.7	10.0		

	TEST RE	SULTS	
Opening	Percent	Spec.*	Pass?
Size	Finer	(Percent)	(X=Fail)
75.0mm	100.0		
53.0mm	65.5		
37.5mm	65.5		
26.5mm	61.8		
19.0mm	59.5		
16.0mm	58.6		
13.2mm	55.1		
9.5mm	50.2		
4.75mm	41.8		
2.36mm	35.3		
1.18mm	28.5		
0.600mm	21.4		
0.300mm	14.6		
0.150mm	11.8		
0.075mm	10.0		

Sandy Gravel some	Material Description Silt/Clay	<u>ption</u>							
PL=	erberg Limits (ASI LL=	TM D 4318) PI=							
USCS (D 2487)=	Classificatio AASHT	<u>on</u> O (M 145)=							
D ₉₀ = 69.2577 D ₅₀ = 9.3771 D ₁₀ =	Coefficients D ₈₅ = 66.4308 D ₃₀ = 1.3706 C _u =	D ₆₀ = 21.8530 D ₁₅ = 0.3148 C _c =							
	Remarks								
F.M.=5.71									
Date Received: 4	Apr 24,2023 Date	e Tested: Apr 25,2023	_						
Tested By: 1	J.H-J		_						
Checked By: J	J.Hopwood-Jones								
Title: Lab Manager									

Date Sampled: Dec 14,2021

(no specification provided)

Location: TP2
Sample Number: SS-1
Depth: 1.70m

McINTOSH PERRY

Client: Grizzly HomesProject: Grizzly homes

Project No: CCO-220256 Figure

GRAIN SIZE DISTRIBUTION TEST DATA

2023-05-01

Client: Grizzly Homes **Project:** Grizzly homes

Project Number: CCO-220256

Location: TP2

Depth: 1.70m Sample Number: SS-1

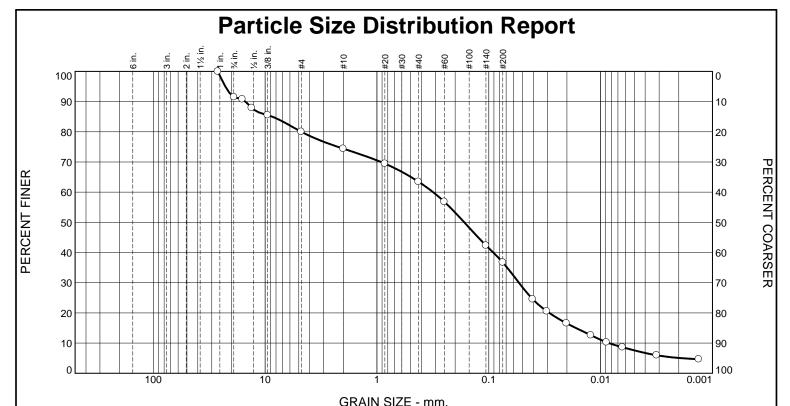
Material Description: Sandy Gravel some Silt/Clay

Sample Date: Dec 14,2021 Date Received: Apr 24,2023

Tested By: J.H-J Test Date: Apr 25,2023
Checked By: J.Hopwood-Jones Title: Lab Manager

Sieve Test Data

			0,010	ot Data		
Dry Sample and Tare (grams)	Tare (grams)	Cumulative Pan Tare Weight (grams)	Sieve Opening Size	Cumulative Weight Retained (grams)	Percent Finer	Percent Retained
1798.84	0.00	0.00	75.0mm	0.00	100.0	0.0
			53.0mm	621.39	65.5	34.5
			37.5mm	621.39	65.5	34.5
			26.5mm	687.02	61.8	38.2
			19.0mm	728.60	59.5	40.5
			16.0mm	744.14	58.6	41.4
			13.2mm	808.28	55.1	44.9
			9.5mm	896.47	50.2	49.8
			4.75mm	1046.86	41.8	58.2
			2.36mm	1164.31	35.3	64.7
			1.18mm	1286.51	28.5	71.5
			0.600mm	1413.57	21.4	78.6
			0.300mm	1535.32	14.6	85.4
			0.150mm	1585.80	11.8	88.2
			0.075mm	1618.37	10.0	90.0


Fractional Components

Cobbles	Gravel				Sa	nd	Fines			
	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
0.0	40.5	17.7	58.2	8.1	16.0	7.7	31.8			10.0

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
		0.3148	0.5269	1.3706	3.9717	9.3771	21.8530	63.5502	66.4308	69.2577	72.0964

Fineness Modulus 5.71

_ McIntosh Perry _____

9/ .75mm	% G	ravel	% Sand			% Fines	
% +75mm	Coarse	Fine	Coarse	Medium	Fine	Silt	Clay
0.0	8.5	11.5	5.6	10.9	26.8	29.1	7.6

PL=

USCS (D 2487)=

D₉₀= 14.9684

D₅₀= 0.1656 D₁₀= 0.0084

TEST RESULTS									
Opening	Percent	Spec.*	Pass?						
Size	Finer	(Percent)	(X=Fail)						
26.5mm	100.0								
19.0mm	91.5								
16.0mm	90.8								
13.2mm	87.9								
9.5mm	85.6								
4.75mm	80.0								
2.00mm	74.4								
0.850mm	69.5								
0.425mm	63.5								
0.250mm	56.8								
0.106mm	42.4								
0.075mm	36.7								
0.0405 mm.	24.6								
0.0303 mm.	20.6								
0.0202 mm.	16.6								
0.0122 mm.	12.6								
0.0089 mm.	10.3								
0.0064 mm.	8.6								
0.0032 mm.	6.0								
0.0013 mm.	4.6								

Remarks

Material Description

Atterberg Limits (ASTM D 4318)

Classification

Coefficients

D₈₅= 8.6139 D₃₀= 0.0538

C_u= 37.32

AASHTO (M 145)=

Date Tested:

D₆₀= 0.3150

D₁₅= 0.0166 **C_c=** 1.09

Apr 27,2023

Note: Specific Gravity of Soil is Assumed. F.M.=2.22

Date Received: Apr 24,2023

Silty Gravelly Sand trace Clay

Tested By: J.H-J

Title: Lab Manager

Checked By: J.Hopwood-Jones

(no specification provided)

Location: TP12 Sample Number: SS-2

Depth: 0.60m

Client: Grizzly Homes Project: Grizzly homes

Project No: CCO-220256

Figure

Date Sampled: Dec 14,2021

1cintosh **P**erry

GRAIN SIZE DISTRIBUTION TEST DATA

2023-05-01

Client: Grizzly Homes **Project:** Grizzly homes

Project Number: CCO-220256

Location: TP12

Depth: 0.60m Sample Number: SS-2

Material Description: Silty Gravelly Sand trace Clay

Sample Date: Dec 14,2021 Date Received: Apr 24,2023

Testing Remarks: Note: Specific Gravity of Soil is Assumed.

Tested By: J.H-J Test Date: Apr 27,2023 Checked By: J.Hopwood-Jones Title: Lab Manager

Sieve Test Data Cumulative Cumulative Dry Sample Sieve Weight Pan and Tare Tare **Tare Weight** Retained Percent **Percent** Opening (grams) (grams) (grams) Size (grams) Finer Retained 869.79 0.00 0.00 26.5mm 0.00 100.0 0.0 19.0mm 73.93 91.5 8.5 16.0mm 79.99 90.8 9.2 87.9 13.2mm 105.01 12.1 14.4 9.5mm 125.68 85.6 4.75mm 173.82 80.0 20.0 2.00mm 222.60 74.4 25.6 0.00 0.850mm 7.26 69.5 109.14 0.00 30.5 0.425mm 36.5 16.07 63.5 0.250mm 56.8 43.2 25.80 0.106mm 47.02 42.4 57.6 0.075mm 55.28 36.7 63.3

McIntosh Perry _

Hydrometer Test Data

Hydrometer test uses material passing #10

Percent passing #10 based upon complete sample = 74.4

Weight of hydrometer sample =109.14

Table of composite correction values:

 Temp., deg. C:
 19.2
 20.3
 20.4

 Comp. corr.:
 -3.0
 -3.5

Meniscus correction only = -1.0Specific gravity of solids = 2.775

Hydrometer type = 152H

Hydrometer effective depth equation: L = 16.6007 - 0.187 x Rm

Elapsed Time (min.)	Temp. (deg. C.)	Actual Reading	Corrected Reading	K	Rm	Eff. Depth	Diameter (mm.)	Percent Finer	Percent Retained
1.00	19.2	40.0	37.0	0.0133	39.0	9.3	0.0405	24.6	75.4
2.00	19.2	34.0	31.0	0.0133	33.0	10.4	0.0303	20.6	79.4
5.00	19.2	28.0	25.0	0.0133	27.0	11.6	0.0202	16.6	83.4
15.00	19.2	22.0	19.0	0.0133	21.0	12.7	0.0122	12.6	87.4
30.00	19.2	18.5	15.5	0.0133	17.5	13.3	0.0089	10.3	89.7
60.00	19.2	16.0	13.0	0.0133	15.0	13.8	0.0064	8.6	91.4
250.00	20.3	12.0	9.0	0.0131	11.0	14.5	0.0032	6.0	94.0
1440.00	20.4	10.5	7.0	0.0131	9.5	14.8	0.0013	4.6	95.4

Fractional Components

Cabbles	Gravel			Sand				Fines			
	Cobbles	Coarse	Fine	Total	Coarse	Medium	Fine	Total	Silt	Clay	Total
	0.0	8.5	11.5	20.0	5.6	10.9	26.8	43.3	29.1	7.6	36.7

D ₅	D ₁₀	D ₁₅	D ₂₀	D ₃₀	D ₄₀	D ₅₀	D ₆₀	D ₈₀	D ₈₅	D ₉₀	D ₉₅
0.0019	0.0084	0.0166	0.0288	0.0538	0.0913	0.1656	0.3150	4.7411	8.6139	14.9684	22.6848

Fineness Modulus	(:	C _C		
2.22	37.32	1.09		

McIntosh Perry _

HYDROGEOLOGICAL ASSESSMENT AND TERRAIN ANALYSIS GRIZZLY HOMES SUBDIVISION, BECKWITH, ONTARIO

APPENDIX J: NITRATE ATTENUATION CALCULATIONS

CCO-22-0256

Grizzly Homes, Franktown, ON

Nitrate Loading Calculations Jul.25.2023

Land Area

	A _{total}	268,562.80 m2
	A _{imperv}	27,119.90 m2
	Infiltrating Area	89.9%
	A_{perv}	241,442.90 m2
Water Surplus (W _s)		010.4
Precipitation		943.4 mm/yr
Evapotranspiration		609.5239 mm/yr
W _s = Precipitation - Evapotranspiration	W _s	333.8761 mm/yr
	,	0.333876 m/yr
Infiltration Factor (I _f) per MOEE 1995		
Торо		0.18750 (0.7% average slope)
Soil		0.3113
Cover		0.15 Mix of woodland and cultivated land
	l _f =	0.649
Infiltration (1)		0.04//40
I=W _s * I _f	=	0.216619 m/yr
Runoff = W_s - I	Runoff =	0.117257 m/yr
Dilution Water Available (D _w)		
D _{w.pery} = A _{pery} * I	D _w =	52301.08 m3/yr
w,perv perv	VV	143290.63 L/day
$Runoff_{perv} = A_{perv}^*W_s^*(1-I_f)$	Runoff _{perv} =	28310.94 m3/yr
Runoff _{imperv} = A _{imper} *Ws	Runoff _{imperv} =	9054.69 m3/yr
Runoff _{total} = Runoff _{perv} + Runoff _{imper}	Runoff _{total} =	37365.63 m3/yr
	Runoff Reduction % =	0% (if using LID for stormwater management)
	Runoff Reduction =	0.00 m3/yr
$D_{w \text{ (final)}} = D_{w,perv} + Runoff Reduction$	D _{w (final)} =	52301.08 m3/yr
	D _{w (final)} =	143290.63 L/day
Nilhanda Oranandardiana		
Nitrate Concentrations	0	2.0 mg/l
Background Nitrate Concentration (C _b) Max Boundary Nitrate Concentration (C _{boun})	C _b =	2.8 mg/L 10 mg/L
iviax Bouridary iviti ate concentration (C _{boun})	C _{boun} =	IIIg/L
Effluent Nitrate Concentration (C _e)	C _e =	40 mg/L
(.0)	Nitrate Reduction	0% (if CAN/BNQ 3680-600 N-I or NSF/ANSI 245 applies)
	C _{e (final)} =	40 mg/L
	o (mar)	,
Effluent Loading (Q _e)	Q _e =	1000 L/day/Residential Lot
Mandagan Allanakla Namakan 61 - 420		Outside to d.N. House Common tracking (C.)
Maximum Allowable Number of Lots (N)	or	Calculated Nitrate Concentration (C _w) N= 30 lots
$N = [D_{w} * (C_{b} C_{boun})] / [Q_{e} * (C_{boun} C_{b} C_{e})]$	31.454	
N =	31.434	$C_{w} = [(C_{e} * Q_{e} * N) / ((Q_{e} * N) + D_{w})] + C_{b}$ $C_{w} = 9.725 \text{ mg/L}$
		$C_{\rm w}$ = 9.725 mg/L

Potential Evapotranspiration

Thornthwaite Method, "Hydrology & Hydraulic Systems", Gupta

Etmonth = 1.62 (10*Tm)/I)^a

where:

a = 675*10^-9*I^3 - 771 *10^-7*I^2 +179*10^-4 * I + 492*10^-3

Ottown MacDonald Continu Int'l A (VOW)

 $I = sum (Tm/5)^1.514$

Stn:	Ottawa MacDonald -Cartier Int'l A (YOW)							
	Site Clin	ate ID: 61	06000					
Month	Temp C	1	ET (cm)	Daylight	ET (cm)			
			unadjusted	Factor	adjusted			
January	-10.3							
Feb	-8.1							
March	-2.3							
April	6.3	1.4189	2.8610	1.13	3.2330			
May	13.3	4.3982	6.4518	1.28	8.2583			
June	18.5	7.2487	9.2396	1.29	11.9191			
July	21	8.7821	10.6062	1.31	13.8942			
Aug	19.8	8.0336	9.9484	1.21	12.0375			
Sept	15	5.2767	7.3542	1.04	7.6483			
Oct	8	2.0372	3.7105	0.94	3.4879			
Nov	1.5	0.1616	0.6001	0.79	0.4741			
Dec	-6.2							
1		37.35695	50.7719		60.9524			
thus a =		1.0883						

Notes:

- -Daylight Factor is an adjustment Factor for possible hours of sunshine based on latitude for Ottawa.
- -Monthly temperatures from Environment Canada Climate Normals (1981-2010)

Input data from user
Set value
Site Constant (adjustment for latitude)
Calculated by worksheet

 $C_w <= C_{boun}$, therefore proposed development will not exceed ODWO at property limit